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ABSTRACT

Smart domestic robots are poised to revolutionise the way household chores and everyday tasks are
carried out in the home of the future. At the heart of the "intelligence" and behaviour of these robots
will be complex machine learning (ML) systems that, in addition to extensive training at the manu-
facturing stage, will most likely require further on-site adjustments to adapt to customers and their
environments. Drawing from the robotics literature on Learning from Demonstration and Human Ro-
bot Interaction, we review relevant techniques which we hypothesise customers could realistically
use to perform these adaptation and customisation steps as smoothly and effortlessly as possible.

INTRODUCTION

Recent years have seen an increasing number of personal robots providing support for various do-
mestic tasks, ranging from everyday household chores to assisting disabled and elderly people. The
market is expected to grow annually at double-digit rates in the next decade, reaching $35 million
by 2022, according to P&S Market Research [1]. This growth is fuelled by advances in manufactur-
ing, electronics, and robotics, but lately increasingly also by the rapid progress made in “artificial
intelligence”. The recent boom of deep learning is gradually enabling the transition from dumb ma-
chines executing simple repetitive tasks or requiring full manual control, to smart devices that can
autonomously service humans and more naturally interact with them. Machine learning is involved

HCML Perspectives Workshop at CHI 2019, May 4 2019, Glasgow, UK
© 2019 Copyright held by the owner/author(s).



Enabling Customer-Driven Learning and Customisation Processes for ML-Based Domestic Robots

Figure 1: Prototype of our autonomous
room-tidying robot presented at CEATEC
2018 [25]. The robot was trained to recog-
nise and classify hundreds of different
household objects, and to move these ob-
jects to their desired places. This destina-
tion can vary depending on object type,
e.g. rubbish in one bin, toys in another,
and slippers arranged next to each other.
Users can specify areas to tidy up and indi-
cate destination containers using speech
input and pointing gestures, but the robot
is not able to recognise new objects and
integrate them in the tidying process. Nor
can the user provide assistance to the ro-
bot, to improve its understanding of the
task or to teach it entirely new tasks.
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at several stages within that sophisticated process: in the algorithms that analyse the environment
and the task context, as well as in the modules that enable efficient communication with users using
human-based interactions such as speech, gestures, etc.

The more sophisticated the processes and the more diverse the target objects to manipulate, the
more machine learning models require examples for training. Considering the wide variety of house-
holds and people, it is unlikely that factory-trained models will be sufficient for complex tasks in-
volving many unknown elements, e.g. tidying up a room or minding a baby. To tackle these kinds of
highly context-dependent challenges, the robot will have to learn or hone their skills directly from
the customers, i.e. from non-technical users with limited time and patience. This means that the
learning and customisation processes need to be as simple and short as possible.

Arelevant line of research addressing such issues is Learning from Demonstration (LfD) also known
as imitation learning[5, 7]. In LfD a robot is trained to execute tasks via interaction with humans,
potentially even non-experts. There is considerable work dealing with LfD in the robotics literature
with many of the explored techniques addressing tasks relevant to personal robots, e.g. picking and
placing, finding motion paths in a room with obstacles, recognising common objects, responding to
natural speech input etc. In this short paper, we outline the machine-learning needs of future smart
domestic robots and examine what we believe are relevant LfD approaches that can be leveraged so
that customers will be able to efficiently teach and customise their products.

MACHINE LEARNING-DRIVEN DOMESTIC ROBOTS

There are a variety of domestic tasks that can potentially be accomplished by robots (some of which
already are). We describe the challenges of customer-driven robot teaching in the context of tidy-
ing up a cluttered room. This complex task involves a number of technical hurdles and subproblems
that can be overcome with the help of (user-guided) machine learning. Based on our recent expe-
rience of building a prototype of an autonomous room-tidying robot (see Figure 1 and [25]), we
identify the following subtasks to be performed by the machine: moving about in the room (while
avoiding obstacles), recognising objects to put away, determining how to pick them up (grasping),
deciding where they belong, and how to place them at their destination or dispose of them. While
the robot’s machine-learning models will have been bootstrapped with extensive prior knowledge of
typical household items and room environments, unavoidably the customer will have to instruct the
robot what to do with these items as well as help it recognise previously unseen objects. Further sup-
port from the user to ensure smooth and safe navigation of the robot will likely also be required. We
believe that this additional context-specific information can be provided by the user with minimum
overhead using adequate techniques from LfD and related learning methods.
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Learning Behaviour from Demonstration

Direct Teaching

In the machine learning field, a major distinction of LfD approaches is between action-driven and
goal-driven learning. In action-driven learning (often referred to as behaviour cloning), the demon-
stration is treated as supervision and learning takes place as the robot tries to mimic the basic move-
ments of the demonstrator. Despite the low-level view of the problem, it is not a simple task as the
physical abilities of the robot do not correspond directly to the human’s, and the robot often has a
different viewpoint and orientation. A second approach to LfD is goal-driven learning (sometimes
referred to as inverse-reinforcement learning), where the robot attempts to infer what the goal of the
task is, and then determines which policy (sequence of its actions) would best achieve it. In doing so,
the robot abstracts away from trying to find a direct correspondence to each movement, therefore
becoming more robust to physical differences between robot and demonstrator.

The field of robotics typically divides LfD along a different axis, depending on what and how the
demonstration is provided (See left column)[5]. In direct teaching, (a.k.a. kinaesthetic teaching), the
teacher physically manipulates the robot, directly guiding its movements to perform the task. The
robot’s sensors can record task information directly, allowing it to perform well in situations close to
the original demonstration where there is little need to generalise[8, 22]. In observational learning
a human demonstrates the task with their own body, and the robot must learn how these actions
translate to its own physical constraints. Typically, the observation is captured with visual sensors
(camera), and can utilise recent advances in vision[26], object detection [10] and pose estimation
[24].

The conditions of personal robotics tend to favour goal-driven observational learning over the
alternatives as the demands on a non-expert user are comparatively low [2]. For instance, in the
case of direct teaching, it may be difficult for users to guide robotic arms to pick up and manipulate
household items. Furthermore, the fast-changing nature of the household environment means that
robots will likely have to make strong generalisations as items are constantly found in new locations
and orientations. Many tasks are also hard to decompose into movements, for instance, in cooking
eggs there is a natural variance to the materials that warrants focusing on understanding the goal,
rather than the actual demonstrated movements leading to the result.

Unlike the academic setting, a personal robot exists in an extended interaction with the users in the
household, and thus continual learning becomes an important concern. How should the behaviour of
the robot be corrected? While direct teaching is a demanding form of interaction if it is the basis for
all learning, it may be useful to correct or fine-tune the robot’s behaviour. Such hybrid approaches are
rarely studied in the academic setting, but may be an effective strategy. Similarly, behaviour cloning
may be of use to bootstrap a specific action that can then be followed by more abstract goal-based
teaching and possibly even reinforcement learning techniques, where the robot could autonomously

Figure 2: Two main categories of LfD tech-
niques (illustrations from Calinon[7]).
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One-shot Learning

Machine learning algorithms typically require
exposure to thousands (or millions) of ex-
amples to learn sophisticated behaviour. This
need for big data renders many methods im-
practical for personal robot applications. In
contrast, there is a growing interest in learn-
ing from just a few, or even just a single ex-
ample. Such one-shot approaches are a promis-
ing strategy for learning from end users, who
would otherwise likely grow frustrated from
repeatedly demonstrating a task.

One-shot learning differs from traditional su-
pervised learning in its emphasis on knowl-
edge transfer, helping to abstract away from
inconsequential aspects of the task, and thus
allowing the model to generalise quickly to
new situations. Precisely what and how to
transfer remains an active research topic. Ex-
isting work has shown success in one-shot
learning of object classes [12, 13], and for task
learning from demonstration [11]. Common
approaches utilise shared parameters or rep-
resentations, or meta-learning [14].

However, there are many challenges in extend-
ing one-shot learning to real-world settings.
Consider a demonstration of placing slippers
together. The robot must determine “Did the
user place the object (slipper) there because that
spot (x-y-z coordinate) is ideal, or because that
spot is next to another similar object (the other
slipper)?” Humans reason with a broader prior
knowledge of the consequences of these de-
cisions (e.g. wanting slippers to be together
when putting them on). Here a deeper interac-
tion with users (for instance, pairing instruc-
tions with gesture or language) may aid mod-
els in overcoming such ambiguity.

HCML Perspectives Workshop at CHI 2019

perfect its execution of a task. An example of the latter approach has been proposed for towel folding
tasks [6]. In these contexts, to keep user intervention at a low level, one-shot learning strategies
might also be employed (see left column).

The task demonstration itself is not the only way human interaction can improve such systems.
For example, a user can also communicate positive or negative feedback, helping to refine the robot’s
understanding of the desired behaviour[9, 21].

Learning New Words and Concepts

LfD enables robots to learn sophisticated behaviours from human interaction, but a personal robot
must also learn new concepts. For instance, how would a robot understand what is meant by “Sarah’s
jacket”, which room is “the office”, or that a certain toy has a name and is subject to different consid-
erations? For a robot to generalise to new environments, it must be able to acquire this knowledge
of previously unseen objects.

This is a challenge for domestic robotics. Both object detection and language grounding typically
rely on pre-trained models, which are often trained on images and vocabulary consisting of tens
of thousands, even millions of items. Standard datasets are manually created by ML researchers,
requiring technical knowledge and preprocessing which is difficult to recreate within the home with
non-experts.

We thus argue for the need to learn new concepts and new vocabulary in the context of learning
the behaviours they support. Recent research in visual question answering [18, 19] has shown that
current deep models are capable of inducing such concepts from pairs of images and text instructions
of the sort, “Is there a red cube to the left of the green sphere?”. Such methods induce a simple syntax,
allowing them to isolate which sections of the image are likely to refer to which words. Analogously,
if a demonstrator accompanies the action of moving a coat with the statement “I’'m putting Sarah’s
jacket in the closet” it could provide the necessary cues for inducing the concept in a similar way. This
has been previously demonstrated for navigation tasks [16].

Scaling this to the personal home domain has several challenges. Humans interact with each other
not in strict, unambiguous text commands, but with fast, informal speech, thus necessitating the de-
velopment of more targeted and accurate speech recognition. Still, the contents of each speech utter-
ance are difficult to decode. Having a rich understanding of the world (and other humans) allows us
to exclude information that might be inferable from the context. Modelling such pragmatic reason-
ing in the context of interaction is an exciting and necessary direction of research for natural verbal
interaction [15]. Yet another challenge is the development of less synthetic data for bootstrapping
command-based learning, or finding less data-hungry methods [4].
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Customisation after Deployment

How to adapt a trained model to new situa-
tions is an active topic of academic research.
As models learn new tasks, existing model pa-
rameters may be adjusted, and the perfor-
mance on previously-mastered tasks may suf-
fer (this process is known as catastrophic for-
getting). Current research aims to maintain the
model’s ability to perform old tasks during
additional training, sometimes by holding pa-
rameters fixed, and sometimes by increasing
model capacity as more tasks are added[17, 20,
23].

However, customisation in a real product poses
its own unique set of challenges and prompts
a discussion of what degree user customisa-
tion in ML products should be supported. A
looming concern is user safety: A robot trained
to chop vegetables, whose parameters for that
task are altered, may potentially behave in
dangerous ways. Malicious users may also in-
tentionally teach robots to perform dangerous
activities. It is therefore important to consider
the extent to which users can customise such
systems.

One standard way to limit customisation while
supporting novel behaviour is to provide only
an API to pre-trained behaviours. Behind such
a wall, users can create new skills by com-
bining existing ones, or register newly-taught
skills in a manner where they can be reviewed
prior to allowing them to be deployed in the
robot. Further risk assessment is warranted
to determine potential safety concerns and an
appropriate set of control measures.
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CONCLUSION

While in academia there has been considerable research efforts looking at teaching robots tasks via
user-friendly techniques such as learning from demonstration, there are still few applications of those
concepts in the consumer market. There is currently no personal robot that can autonomously accom-
plish complex domestic tasks that require am in-depth understanding of the household environment
and/or that involves numerous different (including previously unknown) objects. In this paper, we
have identified promising approaches from the literature that we believe can be leveraged to tackle
some of those challenges. One aspect that has not been extensively tested in academic validation
experiments is scalability and it is unclear how tasks like tidying a room and cooking a meal can
be reliably taught so that the robot can perform them well in a large variety of contexts. Moreover,
there are a host of other issues that need to be addressed before such robots can be deployed in the
homes of regular consumers, including safety and security matters, which are often neglected in aca-
demic research (see left column and [3]), as well as human robot interaction questions surrounding
communication with the robot when it cannot make a decision on its own. We are in the process of
developing LfD and interactive machine learning approaches for these concrete real-world contexts
with non-expert customers as users. We are hopeful that many techniques will prove useful and will
help smart robots become an integral part of the home.

While the all-round robot butler that can autonomously perform multiple household chores is still
far away, we believe that we are at the dawn of a new era in which smart domestic robots powered
by advanced machine learning systems will be able to efficiently assist people for specific household
tasks. Successful solutions to train, refine and customise those ML systems will likely combine several
machine- and user-centric methods from traditional programming and teaching to different flavours
of learning from demonstration techniques.
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