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Figure 1: Phone-based fingertip-tracking system and hand models in VR: a) a custom mount with two mirrors captures the
hand operating a phone from two different angles, 3D fingertip positions estimated with deep learning are used to control
virtual hand hand models in VR (b) and c)).

Abstract
Using a phone as a VR controller is challenging because users
cannot see their fingers when aiming for targets on the touchscreen.
We propose using two mirrors mounted above the screen that
reflect the front camera and a purpose-built deep neural network to
robustly infer the 3D position of fingertips manipulating the phone.
Network training is self-supervised after only a few initial labelled
images and does not require any external sensor. We present a
few example scenarios showing potential applications that use our
phone-based fingertip tracker for precise touch input and above-
screen interaction.
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1 Introduction
Mobile phones are ubiquitous handheld touch devices that can
also be used as a type of controller in virtual reality (VR) [5, 9, 21,
35]. A key challenge is how to render accurate feedback of users’
hands and fingers as they operate the phone in VR. In particular,
common touch input tasks, such as typing and tapping buttons,
become difficult because a user wearing an immersive headset
cannot see their fingers as they aim for targets on the touchscreen.
Some headset sensors can track the hands and represent them as
generic 3Dmodels in the VR world, but current commercial systems
cannot robustly determine poses of hands holding objects [15, 26]
so they cannot be relied upon to precisely track hands and fingers
operating a phone. One workaround is to directly show a camera
feed of the segmented hand [3, 24], but the result is often noisy
with visual artefacts that do not blend well with smooth computer-
generated 3D VR scenes. Furthermore, hands moving outside of
the camera’s view cannot be captured. Another approach exploits
specialised capacitive touchscreens to track finger hover [19], but
phones with such capabilities are rare and currently not sold as
new. Moreover, this style of hover tracking is imprecise [24] with
feedback essentially limited to a 2D cursor for a single hovering
fingertip.

We propose a technique that uses the front camera of a standard
mobile phone to robustly track thumb and index fingertips above
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the touchscreen. Our approach is inspired by MirrorTablet [20] and
Phonetroller [24], both of which capture images of the hand via
the front camera of a mobile device reflected by a mirror mounted
above its screen. Instead of using a single mirror, we use a mount
to place two mirrors at different angles in order to capture the
hand from two distinct perspectives (Figure 1a). The image pairs
are processed by a deep neural network to estimate the position
of the fingertips in local 3D space. The network requires only a
few labelled images initially and is otherwise trained in a self-
supervised manner. Importantly, it does not require any external
sensor to create labelled data thanks to differentiable rendering
employed by our data-creation process. We present preliminary
results of the tracking accuracy of our technique, followed by a
few examples of applications and touch+above screen interactions
enabled by it to inspire deeper investigations of that design space.

2 Related Work
2.1 Around-Phone Interaction Outside of VR
Several around-device hand and finger tracking techniques have
been proposed to extend touch interaction with a mobile phone to
mid-air gestures in non-VR contexts. Finger detection is performed
via a camera [10, 38], a dedicated hand-tracking sensor [30], or
capacitive proximity sensing [12, 16]. Some works focus on adding
or extending the viewing range of a phone camera using mirrors
reflecting the phone’s cameras[43, 44]. Those systems either require
an additional sensor, do not track hands above the screen, or are
designed for coarse gesturing and thus are not suitable for precise
3D tracking of fingertips. HandSee places a prism with a mirror
on the front camera to create stereoscopic images through double
reflection for the detection of finger gestures above the screen [45].
No measured depth errors for fingertip tracking are reported, but
the proximity of the two viewpoints of the two virtual cameras
created by the prism likely makes it difficult to detect small move-
ments in the depth dimension with high precision. Coverage is
also limited in the upper area of the phone screen near the prism,
especially for cameras with narrow fields of view.

Other sensors have also been used to detect hand gestures around
mobile phones, e.g. magnets [27], millimetre-wave radar [22], GSM
[48] and acoustic signals [29, 42, 46]. However, those solutions
either require extra sensors or are sensitive to environmental noise.

2.2 Smartphones as VR Controllers
Smartphones have been considered for use as VR controllers, ini-
tially without visual feedback of the hand in the VR scene. User
interfaces in those cases rely on coarse actions such as directional
dragging and number of fingers touching the screen to operate the
phone "blindly" [5, 9, 21, 35].

When visual feedback of the hand or finger(s) operating the
phone is available, more classic user interfaces are possible, as users
can aim more precisely for targets. Son et al [37] and HoVR-Type
[19] track thumbs above the screen to aid typing on a mobile phone
using respectively a motion capture system and the hover detection
feature of a Samsung Galaxy S4. Those solutions are not practical
for most VR contexts as they rely on costly or discontinued sensing
hardware. Bai et al develop an augmented virtuality system that
captures hands operating a phone with a depth camera mounted

on the headset and renders them over a virtual phone in VR, which
is aligned with the real device [3]. The rendering exhibits several
artefacts due to the imperfect colour-based segmentation of the
skin, the fingertips are not tracked and the camera on the headset
must directly face the hands without occlusion to be able to capture
them.

Phonetroller uses the front camera of the phone to capture a 2D
image of hands manipulating the device through the reflection of a
downward-facing mirror mounted above the screen [24]. Only the
portion of the hand that is directly above the screen is shown as a
2D texture overlay in VR, which provides limited visual feedback
with a greatly reduced sense of depth. Our system expands the idea
of using a top mirror to capture the hand by adding a second mirror
with a different orientation. With that second view, the 3D position
of the fingertip can be inferred via deep learning and used to control
various 3D hand models and objects, which harmoniously blend
with the VR scene.

2.3 Hand-Object Pose Estimation
Current VR headsets and hand trackers can track hands with rel-
atively high spatial accuracy, but even the best systems exhibit
an average positional error of more than 1cm for fingertip detec-
tion [1, 36], which is twice the width of a key on a typical phone
keyboard [14, 34]. Furthermore, these hand trackers are mainly
designed for bare hands, not for hand-object interactions and thus
have trouble robustly estimating hand poses in those situations
[15, 26]. In TabletInVR, which investigates the use of a tablet device
for modelling in VR [39], both hands are captured by a Leap Motion
on the headset and materialised in the VR world, but the authors
note that the sensor is sensitive to screen reflections and certain
hand angles, which leads them to design their gestures around
those constraints.

Computer vision techniques and datasets have been proposed
to estimate the pose of hands holding and manipulating objects
without markers [6, 40, 41], but they rely on cameras on the headset
or in the environment and so tracking performance may degrade
if the hands move to suboptimal viewing angles and distances.
Furthermore, these techniques have not been applied to the specific
scenario of precisely tracking a hand manipulating a mobile phone.

3 Self-Supervised 3D Fingertip Detection
Our goal is to track the user’s fingertip(s) moving above and inter-
acting with the phone screen in the local 3D space of the device
with high precision using only the front camera as sensor. Knowing
the phone’s position (tracked by other means beyond the scope
of this work), we can then obtain the fingertips’ position in world
space to control virtual hand models or other objects.

3.1 Two-Mirror System
For high tracking precision and coverage on all three dimensions
using RGB images as input, multi-view capturing is preferable
[8]. A common multi-view approach is to use stereo vision, but
systems with a small baseline (distance between the two cameras)
and similar capturing angles such as the prism used in HandSee
[45] require perfect calibration and stereo matching to yield a low
depth error. This is difficult to achieve with self-built equipment.
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Figure 2: Data creation pipeline: a) data collection for thumbs and index fingers from both hands,
b) extraction of mask regions of the fingers’ distal phalanges, c) 2D fingertip location on the mask
contours (blue circles) and mask refinement, d) differentiable rendering using the masks and the 2D
fingertip position to obtain the 3D position and orientation of the phalanges.

Figure 3: Polynomial
curve intersecting the
mask contour to de-
termine the fingertip.

We therefore use a two-view setup with two mirrors mounted on
the phone that reflect the front camera at two different positions
and angles: One near-vertical mirror placed close to the camera,
which produces a rear view, and a second mirror placed parallel to
the screen above it, which produces a top view (Figure 1a). Both
mirrors are positioned so that they each reflect the whole phone
screen and the immediate space above it on half of the frame’s
vertical pixel space (Figure 2a).

3.1.1 Frame Preprocessing In a preprocessing step, the two (man-
ually defined) regions corresponding to the two mirror views are
cropped from the source camera frame and transformed into two
square images. These images form the input of the deep learning
pipeline that estimates the 3D pose of the tips of visible thumbs
and index fingers.

3.1.2 Camera Calibration We treat each mirror’s view as a virtual
camera and perform standard calibration procedures using a mini
ChArUco board and ArUcomarkers displayed on the phone’s screen
to obtain each camera’s intrinsic and extrinsic parameters. Those
parameters allow us to transform pixel coordinates into 3D points
in the phone’s coordinate system, whose origin we set to be the
middle of the top bezel of the device.

3.2 Data Creation
To train a neural network that estimates the 3D position of fingertips
based on RGB images, ground truth data with images of fingers
labelled with the corresponding 3D positions of their tips is required.
These labels can be automatically determined using an external
sensor, such as a precise depth camera or a motion capture system
that detects small optical markers. However, such equipment is
typically expensive or cumbersome to set up. We propose a data
creation method that does not rely on any external sensor and only
requires training images obtained from people manipulating the
phone.

The data creation pipeline consists of three steps, which are illus-
trated in Figure 2b, c and d: 1) Segmentation of the distal phalanx
in the pair of input images, 2) detecting the 2D fingertip on the
segmentation mask, and 3) using differentiable rendering to obtain
the best-fitting 3D pose based on the mask silhouette and the 2D
fingertip. We work only with distal phalanges and fingertips instead
of entire hands or fingers, as it allows us to optimise for a rigid

mesh, which is simpler than trying to fit a complex deformable 3D
model.

3.2.1 Mask Estimation The first step of our pipeline is to determine
a segmentation mask of the object to fit, i.e. the distal phalanx of the
thumb or index finger that appears in each of the two input images.
For robust segmentation we seek to use a CNN-based binary object
segmentation neural network. Since there are no public datasets
or neural network models optimised for the segmentation of distal
phalanges, we use an existing pre-trained salient object detector,
BASNet [31], which we fine-tune using a few manually labelled
images (i.e. the boundaries of the phalanges are drawn by a human
annotator). This step yields initial segmentation masks as shown
in Figure 2b.

3.2.2 Fingertip Detection and Mask Refinement In this step we de-
tect the location of the fingertip on the contour of the segmentation
mask. This has two purposes: 1) It allows us to refine the mask by
removing extra pixels beyond the distal interphalangeal (DIP) joint,
which do not belong to the distal phalanx. 2) It adds a constraint
for the neural renderer in the next step to match the 2D and 3D
fingertip locations when optimising the position and orientation of
the phalanx mesh.

To estimate the fingertip location on themask contour, we first fit
a polynomial curve to the mask pixels using regression, as we found
a polynomial provides a good approximation of bent fingers when
the distal phalanx is not cleanly segmented around the DIP joint.
Depending on which of the image’s x-y axes is used as the base
axis, there are two possible curves that can be fit to the pixels. The
correct axis is the one that is orthogonal to the rough orientation of
the phalanx (residuals are calculated on the orthogonal axis), which
can be determined from the aspect ratio of the mask’s bounding
box. The curve intersects the mask contour at least at two points,
one of which is the approximate fingertip position. We determine
the correct point, based on the knowledge of which hand is visible.
For instance, for the rear view, if the digit is the left thumb, we
pick the leftmost intersection point (Figure 3). For the top view, we
choose the top point.

After we locate the fingertip on the contour, we refine the pha-
lanx mask by performing a Boolean AND operation on the current
mask with a disc mask centred on the fingertip and whose radius
is experimentally determined so that pixels beyond the DIP joint
are eliminated (Figure 2c).
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Figure 4: Adaptation of Ge et al’s hand pose estimation net-
work architecture [13] to handle input from multi-view im-
age pairs. Each view is fed individually to the encoder. The
two output latent feature vectors are concatenated in a single
vector. This vector is, in turn, fed to the MLP branch that pre-
dicts the 3D fingertip pose and finger presence probability.

3.3 3D Pose And Location Estimation
The final step of the data-creation pipeline is the estimation of the
3D pose of the distal phalanx. To achieve this, we use differentiable
mesh rendering, which is a self-supervised computer vision tech-
nique that can find correspondences between 3D objects and their
appearances in 2D images [17, 18]. In our case, a differentiable ren-
derer optimises the 6-DoF position and orientation of a 3D phalanx
mesh so that its rendered form best overlaps with the 2D mask.
For the mesh, we use the MANO hand model [33], from which we
extract the vertices and faces belonging to the distal phalanges of
the thumb and the index finger. Using this rigid, non-articulated
subset of the finger meshes allows us to optimise only for 6-DoF po-
sition and orientation rather than a complex articulated hand pose.
While people’s finger sizes and shape differ, this model provides a
sufficient approximation for our purpose.

For a considered phalanx mesh, rotation and translation matrices
that orient and position the mesh are determined through an optimi-
sation process, which iteratively minimises a loss function through
gradient descent. At each step, the mesh is rendered for each vir-
tual camera using Soft-Rasterizer [23] and the corresponding loss
is calculated. This loss function is composed of three constituent
losses: 1) a Silhouette Loss, which rotates and translates the 3D
mesh towards the mask location, a Distribution Alignment Loss,
which attempts to align the mesh silhouette and mask distributions
for faster convergence and 3) a Tip Distance Loss which tries to
align the projected 3D fingertip with the mask’s 2D fingertip. (See
Appendix for mathematical definitions of those losses.) Figure 2d
shows an example of this optimisation process, which results in the
3D phalanx mesh aligned with the corresponding phalanx pixels in
the input images.

The 3D pose of the phalanx is estimated for each frame sepa-
rately, but we can expect the fingertip positions to remain close
in consecutive frames. We make use of that fact by initialising the
values for a new pose with the values estimated in the previous
frame. This decreases the number of iterations required to arrive at
an optimal solution.

3.4 Model training phase
While the data-creation process gives us an estimate of the 6-DoF
pose of fingertips, it is typically slow and therefore not suitable
for real-time inference, which is what we require for tracking. We
therefore use the 3D position and orientation of fingertips obtained
in the data-creation process as ground truth to train a dedicated

end-to-end neural network, which is used for real-time inference.
The goal for such a model is to directly output the pose estimate of
the distal phalanx as well as a probability value indicating to which
finger it belongs or "no finger" if no interacting fingers appear in the
image (fingers used to hold the phone do not count as "interacting"
fingers).

For our neural network base, we use Ge et al’s graph CNN-
based model [13], which is a popular architecture for 3D hand pose
estimation. Since that network expects single-view RGB images
as input, whereas we have image pairs from different views, we
perform the forward pass of the pre-trained encoder with each
image individually and concatenate the latent features obtained as
output. We then feed the concatenated feature maps to the multi-
layer perceptron (MLP) branch of the network to obtain the desired
3D pose and probabilities (Figure 4).

3.4.1 Handlingmultiple fingers Although the data-creation pipeline
described above is designed to predict the pose of a single finger, it
can be easily extended to handle multiple fingers without manu-
ally collecting additional data using mixup data augmentation [47].
Specifically, a source image is randomly chosen from the dataset,
then a check is performed to determine which finger is shown (if
any), and a complementary finger image is randomly picked (i.e.
an image of a thumb or index finger from the other hand) to create
a pair of images. If no finger is present in the source image, an im-
age that includes any finger is randomly chosen. The two selected
images are then blended to form a single combined image.

Models trained in such a way can be deployed for two-hand
input, such as two-thumb typing (Figure 1c).

4 Enabling System
We create a proof-of-concept implementation of our technique
using the following hardware and software components:

Mobile Phone For the phone, we use a Google Pixel 3. We create a
mount for the two mirrors with an articulated arm made of acrylic
glass attached to a holder clipped to the phone (Figure 1a). We cur-
rently use two flat mirrors, but smaller curved mirrors providing
similar coverage could also possibly be used to slightly decrease
weight. We attach optical markers to the mount to track the phone
with an Optitrack motion capture system. We create a custom An-
droid application that crops and transforms the two mirror images
as described above and sends them along with touch data via WiFi
to the inference server.

Neural Network Implementation We collect training data for our
neural network from 11 people performing finger movements on
and above the phone.We feed the data to our auto-labelling pipeline,
where we manually annotate 350 images for each digit to improve
BASNet segmentation. We collect ∼ 30, 000 images for the left hand
and ∼ 35, 000 images for the right hand, with equal amounts of
images for the thumb and index fingers, and ∼ 6, 500 "no finger"
images for each hand. Our neural network pipeline is implemented
in PyTorch with PyTorch3D [32] used for differentiable rendering.
The models are trained for 25 epochs using the Adam optimiser.

Inference Server and VRClient The inference engine runs on a server
with a GeForce RTX 3090 GPU, which achieves an inference time of
∼ 5𝑚𝑠 per frame on average. After applying 1 euro filters [7] to the
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Figure 5: Applications enabled by our fingertip tracker: a) Sketching application with the fingertip represented as a pen; b)
Double raycasting with phone + fingertip to create a rectangular viewing filter lens for map exploration; c) HUD interface with
fixed phone position to assign texture colours chosen with touch to objects selected with head orientation; d) Canoeing game
example, where the thumbtip controls the oar of a character in a canoe. Dragging on the phone screen rows the canoe

estimated fingertip position for smoothing, the data is sent to the
VR client, which, for technical reasons, is deployed on a separate
computer. We use a Vive Pro as VR system and the VR applications
are developed in Unity.

The end-to-end latency of the whole processing chain measured
by a high-speed camera is ∼ 125𝑚𝑠 .

5 Preliminary Performance Evaluation
To obtain an initial assessment of the tracking performance of
our model, we compare the positions of the fingertip estimated by
our technique with the 3D positions of an optical marker affixed
to the top of the nail, as captured by the OptiTrack system. We
recruit six people, who did not contribute data for training, and
ask them to perform slow tapping motions on the whole screen
successively with their thumb and index finger for three minutes.
We compute the root mean squared error for each participant and
each finger and obtain an average RMSE of ∼ 7𝑚𝑚 for the thumb
and ∼ 9𝑚𝑚 for the index finger. These results are encouraging
as our fingertip tracker for hands holding and interacting with
phones demonstrates greater precision than barehand trackers of
commercial HMDs. [1, 36].

6 Applications
With the estimated 3D fingertip position, hand models can be con-
trolled for single-finger interaction to support common touch-based
phone tasks in VR. Additionally, precise finger tracking enables a
range of above-screen and touch-to-air techniques, a space explored
by prior work in non-VR contexts [10, 16, 45] and in extended real-
ity with tabletops, where hands can interact with virtual objects
appearing above the device [11, 28, 39, 49]. We briefly present exam-
ples of applications and interactions leveraging our mobile fingertip
tracker that go beyond simply replicating physical phone manip-
ulations in VR. We leave the deeper investigation and evaluation
of these techniques and the exploration of the underlying design
space to future work.

6.1 Object Control with Finger-Differentiated
Actions

Instead of controlling a hand model, the fingertip can be mapped
to an object that more closely represents an input instrument for a
particular task, similar to how VR controllers can transform into

different handheld tools in VR applications (e.g. a pistol or a sword
in a game). Task-specific representations can be considered at the
finger(tip) level as well. For instance, in a sketching application, the
index fingertip can control the 3D model of a pen, which virtually
inks the screen of the phone (Figure 5a). Pen control and action can
be swapped based on the used finger. For example, when using the
thumb instead of the index finger, the pen could flip to its eraser end
and dragging the thumb on the screen would then erase content.

6.2 Double Raycasting
The tracked phone can be used as a 6-DoF raycasting source in
the virtual 3D space like a standard VR controller [2, 24, 35]. Since
the fingertip is also precisely tracked in the local 3D space of the
phone, it can be used as an anchor for a second ray to support
double raycasting with a single hand, similar to barehand pointing
techniques using multiple fingers for remote interaction with large
displays [4, 25]. Our example in VR considers a resizable rectangular
lens or filter to explore maps, such as revealing the satellite image
of a particular portion of the map (Figure 5b). The centre of the
lens is determined by the phone ray, and the width and height by a
second ray emanating from the centre of the bottom bezel of the
phone and passing through the fingertip. If needed, an action (e.g.
a selection confirmation) can be triggered by pressing the physical
phone’s volume button.

6.3 Use as Head-Up Display
Head-up interfaces, which have a fixed position in the 2D screen
space of the viewport, are often used in XR to show information
to the user. Head-up displays or HUDs can also support phone-
operated menus [24]. In such a setting, the phone does not need to
be tracked as it is used only for its touch capabilities (with 3D visual
feedback of the hand to enable precise targeting). Since fingers are
tracked inside-out via the phone itself and not by the HMD, the user
is free to look in any direction without impacting fingertip detection
accuracy. This also allows the phone to be held in a comfortable,
low-fatigue position, such as resting it on the lap or a table when
sitting. This scenario cannot be supported by existing VR systems
with hand-tracking sensors integrated in the HMD, which expect
the hands to be in view (i.e. directly in front of the HMD) to capture
them. We present an application of this HUD concept, where head
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orientation or gaze is used to point at 3D objects located around
the user in the VR space and the phone is used to choose texture
colours from a palette for selected objects (Figure 5c).

6.4 Touch/Drag Navigation + Mid-Air
Interaction

Scenarios in which the representation of and interaction with the
physical phone are significantly abstracted in the VR world can
also be considered. Expanding on the idea of using both touch and
above-screen input, we propose a novel interaction paradigm for
games, in which the tracked fingertip is mapped to the control
point of a character and dragging on the phone screen moves the
character. One game scenario in which dragging on a surface is
a strong metaphor for motion control is rowing. The fingertip is
mapped to the virtual oar of a character sitting in a canoe (Figure
5d) and dragging the finger on the screen causes the character to
row the canoe. The dragging length, speed and direction control
the speed and direction of the boat via the virtual rowing actions.

Mid-air interaction can also be an integral part of the game,
for example, the rower can raise their oar to try to hit overhead
targets when passing under them. The orientation of the phone
as detected by its internal motion sensors can further be used to
tilt the canoe for added control. Here again, the phone does not
need to be tracked, making such an application easily deployable
on inexpensive mobile 3-DoF VR systems which do not track any
devices or hands. Furthermore, we speculate that single-finger con-
trol of a character with a phone that can be held in a relaxed pose
is likely significantly less fatiguing than using a standard VR con-
troller, whose movements are mapped 1-to-1 to physical leg and
arm motion. Dragging with a finger on a phone screen to row is an
inexpensive but serviceable approximation of haptic feedback and
friction when an oar pushes water backwards.

7 Conclusion
We proposed a deep learning technique to track the 3D position
of thumb and index fingertips on a mobile phone in VR using im-
ages captured by the front camera reflected through two mirrors
mounted on the device. Our method requires no external sensor for
training or inference and only a few images need to be initially la-
belled, with ground truth data mainly generated in a self-supervised
manner through differentiable rendering. We reported initial results
of tracking accuracy and presented several applications uniquely
enabled by our technique. We plan to investigate the potential for
precise finger interaction with mobile phones in VR more deeply
in future work.
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