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ABSTRACT 
We conduct a two-part study to better understand pen grip 
postures for general input like mode switching and command 
invocation. The first part of the study asks participants what 
variations of their normal pen grip posture they might use, 
without any specific consideration for sensing capabilities. 
The second part evaluates three of their suggested postures 
with an additional set of six postures designed for the sensing 
capabilities of a consumer EMG armband. Results show that 
grips considered normal and mature, such as the dynamic tri-
pod and the dynamic quadrupod, are the best candidates for 
pen-grip based interaction, followed by finger-on-pen pos-
tures and grips using pen tilt. A convolutional neural network 
trained on EMG data gathered during the study yields above 
70% within-participant recognition accuracy for common 
sets of five postures and above 80% for three-posture sub-
sets. Based on the results, we propose design guidelines for 
pen interaction using variations of grip postures. 

Author Keywords 
Pen input; touch input; mode switching; EMG.  

INTRODUCTION 
The pen is a popular input method to write, draw, and per-
form precision tasks on a tablet. Most applications require 
input methods to switch between pen "modes" (e.g. inking, 
selection, erasing, scrolling) and to invoke commands like 
adjusting mode attributes (e.g. thickness, colour, brush type) 
[21]. In traditional pen interfaces, this is accomplished with 
graphical widgets, but this can be slow [8,39]. In response, 
new interaction techniques to increase pen input efficiency 
vocabulary have been suggested, such as bimanual pen and 
touch interaction [1,10,13,24,45] and adding sensing capa-
bilities to the pen and the tablet [11,33,48].  

One interesting category of techniques maps input modes to 
different pen grips [2,12,33,36,37]. For instance, when the 
user uses their normal pen-holding posture, a default mode 

like inking is active. To trigger a different mode or interface 
action, the user temporarily changes the way they hold the 
pen, such as extending a finger to touch the tablet in order to 
erase [2]. The advantage of such techniques is that they only 
involve the pen-writing hand, making them suitable for small 
tablets and situations when the other hand is occupied (like 
holding the tablet itself). The main disadvantages when using 
the pen-holding hand for input actions is increased dexterity 
requirements and reduced comfort [2]. 

In all prior work exploring alternative pen-holding tech-
niques, the authors propose different grips that can be de-
tected by their sensing equipment and assess their suitability 
with participants a posteriori. However, handwriting poses 
vary between individuals [7,32] and likely even more so for 
intentionally chosen grip variations. People might have very 
different preferences about what kind of alternative postures 
and pen manipulations they would be willing to adopt for ex-
plicit input actions. Such a priori knowledge of user prefer-
ences to justify the choice of using variations in pen grip pos-
tures for input has not been investigated. On the technology 
side, sensing techniques used for pen-grip recognition are 
mostly based on touch or grip patterns detected by sensors 
embedded in the pen or in the tablet [2,12,33,36,37]. This 
precludes potentially useful gestures that cannot be detected 
by such sensors, like mid-air hand and finger movements, 
and finger-on-hand positions. While previous works have ex-
amined mid-air interaction and hand gesture detection in 
general, there has been little investigation of in-air and fin-
ger-on-hand postures when simultaneously holding a pen. 

Our main contribution in this paper is an elicitation of alter-
native pen-holding postures that people deem acceptable for 
mode-switching and command invocation. By conducting 
these inquiries independent from any specific sensing tech-
nology, we capture unconstrained preferences for variations 
of pen grip and pen manipulation. To also make our investi-
gation concrete and applicable, we explore the possibility of 
using an electromyography (EMG) armband and evaluate a 
subset of those postures suggested by each participant, to 
which we add grips with mid-air and finger-on-hand posi-
tions that theoretically lend themselves to detection using 
muscular electrical activity. We train a deep convolutional 
neural network (CNN) on the EMG data transformed in the 
frequency domain using within and between-participant 
splitting schemes. Our results show that while recognition 
accuracy for between-participant splits is above 30% and 
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50% for five and three-posture sets respectively, within-par-
ticipant splitting achieves recognition above 70% and 80%. 

RELATED WORK 
Our work relates to interaction techniques to enhance pen in-
put and general hand pose sensing. 

Pen Interaction Enhancements 
Many techniques have been proposed to minimize the need 
to use a conventional graphical user interface (GUI). One 
popular approach that has been widely explored is using 
touch input from the other hand [1,10,13,24,25,29,45]. The 
division of labour between the dominant and non-dominant 
hands allows the pen to mostly focus on its inking role, while 
the other hand performs mode-setting and assistive actions. 
While this interaction paradigm provides a wide range of po-
tential enhancements to pen input, it has some shortcomings: 
It is mostly suitable for large surfaces such as digital tab-
letops and graphic tablets where both hands can freely inter-
act on the surface, and bimanual interaction with pen and 
touch displays is not intuitive for most people [23]. Tech-
niques based on how the non-dominant hand grips the tablet 
have also been proposed [12], but they are limited to how 
freely that hand can move while holding the device.  

As an alternative, unimanual techniques using only the pen-
writing hand are better suited to tablets and arguably more 
intuitive. People already use pencils to "switch modes" using 
the eraser end and issue "commands" like changing the col-
our with a button on some specialised pens. One way to 
achieve digital unimanual pen techniques is by adding sens-
ing capabilities to the pen itself. For instance, tilt sensing can 
detect when the pen is held upright to invoke a menu [11]. 
With magnets, orientation on and above the surface can be 
detected to support further gestures [15]. A bendable stylus 
improves expressivity in digital art [6]. A grip sensor around 
the pen barrel enables detection of different grasping pos-
tures, which can be mapped to discrete or continuous actions 
(e.g. rubbing the index finger against the barrel) 
[12,33,36,37].  Most closely related to our investigation are 
Cami et al.’s unimanual pen-holding postures based on how 
the fingers and hand contact the tablet [2]. This technique 
requires no specialised pen sensors, but the posture set is con-
strained by the contact-based sensing method. 

Using modified ways of holding and manipulating the pen is 
a compelling approach, but the postures and actions in pre-
vious works above were at least partially chosen to match 
technical sensing capabilities, rather than what seem natural 
to users. Our work begins with a study to understand what 
normal and alternative handwriting postures people naturally 
choose, without constraints from sensing hardware. 

Hand and Finger Sensing 
Instead of inferring hand poses with sensors embedded in the 
pen or tablet, the poses of the hand can also be tracked by 
external sensors. These sensors can be placed directly on the 
hand, like a data glove [19] or light motion sensor boards on 

the fingers [14]. However, instrumenting the hand can im-
pede dexterity, movement, and object manipulation.   

An alternative is to use sensors not mounted on the hand.  
The most widespread approaches use computer vision with 
[17,35,42] or without [28,49] depth sensing. The majority of 
these techniques are geared towards tracking bare hands, but 
some also handle hands manipulating objects [9,34]. Vision-
based systems have become more accurate and robust with 
the increased resolution of cameras and the advent of deep 
learning, but they also have some limitations. For example, 
they have restricted tracking range (limited to the instru-
mented area) and reduced detection accuracy in the presence 
of occlusions. Alternative mobile solutions consider locating 
the sensors not directly on the hand, but on the arm. Here 
again, accelerometers [40,43] or cameras [18] can be used 
for coarse hand gesture or limited-range pose detection, but 
for more precise estimation, on-body sensors that can read 
low-level signals of anatomical features and activity seem 
quite promising. For example, pressure (force) [5], electrical 
impedance tomography [47], ultrasound [16,27], infrared 
[26], and electromyography (EMG) [31,46].  

We are not aware of works that attempt to recognise pen-
holding postures using external sensors that can capture fin-
ger positions when not touching the pen or the tablet. For 
instance, extending the pinkie in mid-air cannot be detected 
by a grip sensor on the pen [12,33] or the touch sensor on the 
tablet [2]. Based on the results of our study, we evaluate how 
well a consumer EMG armband recognises some of these 
postures. EMG has already been previously used to detect 
written digits and sketches [22,44], so it seems like a reason-
able approach for detecting different pen grips. 

STUDY 
We conduct a two-part study to elicit and evaluate different 
pen-holding postures for general tablet input, including 
mode-switching and command invocation. The intention is 
to gain an understanding of feasible grip variations, consid-
ering people’s preferences and capabilities. Note this is not a 
classic "elicitation study" [38,41], since we are not interested 
in mapping specific postures to individual commands (our 
study does not use different "referents"). We use the term 
"elicit" in the broader sense, to draw out natural pen grip pos-
tures from participants that could be used for general pen in-
put, without associating specific actions to them. 

Our study has four goals: discover user-proposed pen-hold-
ing postures suitable as interaction techniques; measure sub-
jective preference for the participant’s top proposed postures 
and a set of pre-selected postures (chosen for representative 
diversity and suitability for EMG sensing); formulate design 
guidelines for grip-based pen interaction based on the results; 
and gather data to assess the practicality of posture detection 
using a commercial EMG armband. 

Participants 
We recruited 30 volunteers, 10 female, 20 male, with mean 
age 34.6 (SD=7.9). 4 were left-handed and 24 right-handed. 



 

Two participants declared themselves ambidextrous stating 
that they used their right hand to write and their left hand to 
draw. We only allowed the tasks to be carried out with the 
same hand and both chose to perform the experiments with 
their right hand. 6 participants were frequent users of pen-
operated devices (daily or weekly use), 10 occasionally used 
digital pens (once or twice a year, typically to digitally sign) 
and all others never used digital pens. With regard to poten-
tial wrist or hand motor impairments, only one person de-
clared minor reduced wrist extension range due to an opera-
tion. This did not impede their handwriting ability in any 
way. One participant's arm was too thin for the EMG arm-
band, so we did not record any EMG data for them, only their 
subjective scores and feedback. 

Part 1: Posture Elicitation 
In the first part of the study, participants propose different 
pen holding postures that would still allow them to write or 
draw, without consideration for current or future sensor tech-
nologies. Our criterion for "different" is poses that can be 
recognised as such by a human observer or by a low-level 
body signal sensor such as EMG or ultrasound.  

 

(a) Dynamic Tripod 

 

(b) Dynamic Quadrupod 

 

(c) Lateral Tripod 

 

(d) Lateral Quadrupod 

Figure 1. Common handwriting posture styles (called “mature 
pen grasps” in occupational therapy literature) [32] 

We also observed the normal handwriting posture (or pos-
tures) of each participant. Surveys from the occupational 
therapy literature identify four "mature pen grasps" [7]. By 
far, the most common is the Dynamic Tripod [32] followed 
by the Dynamic Quadrupod, with a less common variation 
for each: Lateral Tripod and Lateral Quadrupod (see Figure 
1). People may further change their grip depending on the 
type of pen task (handwriting, drawing, shading, etc.). We 
expect even more variability when people propose even less 
conventional pen-holding poses, but we hope that a set of 
relatively popular candidates will emerge. 

Protocol 
Participants sat or stood at a height-adjustable desk with a 
Wacom Cintiq 22HD Touch and stylus as well as a piece of 
paper with a ballpoint pen. They were asked to adjust their 
seat and the height of the desk to their liking. The concept of 
mode-switching was explained using the selection of various 
stroke styles and pen functions in the menus and toolbar of 
Microsoft Paint. This was used as motivation for using 

different pen-holding postures for more efficient mode-
switching. Participants were then asked to find at least three 
ways to hold or manipulate a pen for handwriting and sketch-
ing that differed sufficiently from their normal handwriting 
pose. They were also told that those postures should be easily 
achievable from their normal pen grip and were only in-
tended for momentary switches, such as temporarily chang-
ing to an eraser. The experimenter did not demonstrate any 
examples of alternative pen grips to avoid introducing any 
bias. The participant was encouraged to try their proposed 
postures with the stylus on the tablet, and with the ballpoint 
pen on paper. Once they exhausted possible postures to pro-
pose, they were asked to choose three of their suggested pos-
tures they felt were most comfortable and controllable. These 
formed their elicited posture set to be tested in part 2. 

Part 2: Performance and Preference 
In the second part, we use Cami et al.'s protocol [2], where 
participants perform a variety of pen tasks using different 
postures, rating each for comfort. During these tasks, partic-
ipants wore a Myo armband (Figure 2) to record EMG data 
in order to later test recognition using machine learning.  

 
Figure 2. Participants wore a Myo armband to capture EMG 

data while performing pen tasks on the tablet. 

Postures 
In addition to the participant’s normal handwriting posture 
and their three elicited pen-holding postures from part 1, they 
also tested a set of 7 pre-selected pen-holding postures rep-
resenting different types of poses from previous work and 
new postures not tested before (6 of these are illustrated in 
"Pre-Selected Postures" in Figure 3): 

• The two highest rated postures from Cami et al. [2]: con-
tacting the side of the palm on the surface (Side Palm) and 
keeping the entire hand off of the surface (Floating Palm). 

• Two new postures with one finger extended in mid-air 
away from the pen: Extended Index and Extended Pinkie. 

• Two new pressure-based postures that we hypothesised 
would be detectable using EMG signals: Grip Pen Firmly 
and pressing the pinkie and ring finger against the palm 
(Press Ring and Index Against Palm). 

• In addition, we included the lowest rated posture from 
Cami et al.’s set of potential postures: simultaneously con-
tacting the tablet with the side of the palm and all fingers 



 

while holding the pen (STIMRP using their notation). This 
forms a theoretical lower bound. 

In sum, the number of tested postures for each participant 
was: 1 normal + 3 elicited + 7 pre-selected = 11 postures. 
When a participant’s elicited posture coincided with a pre-
selected posture, it was only included once. 

Protocol 
Before beginning a set of tasks with a specific posture, the 
participant practised by writing and tracing on an empty tab-
let screen. No EMG data was recorded during this practice. 
Then, the participant performed 15 different pen input tasks 
with the posture. The tasks were identical to that of Cami et 
al.: 13 constrained tasks (tracing, shape drawing, crossing, 
and tapping), and 2 unconstrained tasks (freeform sketching 
and writing). The order of tasks was randomised within these 
constrained and unconstrained groups. After performing all 
tasks using a specific posture, the participant rated it on a 
continuous scale from 1 (best) to 7 (worst) with a step of 0.5. 
They were told to consider both comfort and controllability. 
Each rating was input using a horizontal slider on the tablet, 
and all ratings up to the current posture were displayed as a 
list so the participant could adjust previous scores to make 
their rating more relative than absolute. 

Participants performed the first two runs of tasks with their 
normal grip and the STIMRP posture, i.e. the best and likely 
the worst postures, in order to experience the two extreme 
conditions first. The order of the remaining postures was ran-
domised. Participants were told they could take breaks at the 
end of any run if they wished. After they completed all tasks 
for all postures, the experimenter conducted an interview to 

gather detailed feedback. At the end of the interview, partic-
ipants were offered a choice of snacks as a thank-you. On 
average, each participant took 45 minutes to complete both 
parts of the experiment. 

Results 
Most participants needed time to think and experiment to 
propose viable alternative postures. Some already used mul-
tiple postures to write and draw. For example, two partici-
pants had learned traditional calligraphy in school, so they 
proposed postures matching brush-holding grips they had 
been taught. Overall, participants proposed 123 postures, 
which corresponds to an average of 4.1 postures per partici-
pant. Within the 123 individual postures, only 7 matched 
those in the pre-selected posture set. 2 were identified as Ex-
tended Index, 3 as Extended Pinkie and 2 as Floating Palm. 

 
Normal Pen-Holding Postures 
Most participants adopted the Dynamic Tripod as a normal 
handwriting posture, while the rest used other mature grasps 
with one participant using a normal posture we later identify 
as Index Middle and Ring Grasp (Table 1). 

Normal Handwriting Posture Number of Participants 
Dynamic Tripod 25 

Dynamic Quadrupod 2 
Lateral Tripod 1 

Lateral Quadrupod 1 
Index Middle and Ring Grasp 1 

Table 1. Normal handwriting postures used by participants 

 

Pre-Selected Postures 

      

(a) Side Palm * (b) Floating Palm * (c) Extended Index * (d) Extended Pinkie * (e) Grip Pen Firmly * (f) Press Ring and  
Index Against Palm * 

Elicited Postures Chosen for Testing by at Least 3 Participants 

       
(g) Index, Middle, 
and Ring Grasp 

(hl) Index Middle 
Wrap 

(i) Index and 
Thumb Pinch 

(j) Tripod Hold 
Pen High 

(k) Pen Upright * (l) Pen Low Angle * (m) Pen Tilt Forward * 

Figure 3. Pre-selected postures tested by all participants (a-f) and postures chosen by at least three different participants for inclu-
sion in part 2 of the study (g-m). Variations of normal postures are marked with * (these postures do not specify the exact way the 
hand is holding the pen, which is dependent on the participant’s normal pen grip). Colours denote different categories of postures: 
fingers gripping the pen (blue), pen tilt (green), tablet contact (red), extended finger (yellow), pressure on the pen or hand (purple). 

 



 

Unique Elicited Postures 
To identify unique elicited postures among individually pro-
posed poses, we used these key features: number of fingers 
touching the pen, whether the fingertip or finger pad is used, 
the position of the grip along the pen barrel relative to the nib 
(low, normal, high), pen tilt angle (low towards the user, nor-
mal, upright, forward tilt), and the amount of wrist and arm 
rotation relative to a normal grip (normal, curled). This pro-
cess yielded 53 unique postures: Figure 3g-m illustrates 7 
common examples proposed by at least three participants for 
inclusion in part 2 of their session. Notably, almost all pro-
posed postures used finger, hand, or forearm position, or pen 
angle. No one suggested pressure-based postures, and only 
two participants suggested postures with fingers contacting 
the tablet, but these were to help support the hand. 

Posture Types 
We divide all postures into categories representing their type 
(shown in different colours in Figure 1, Figure 3 and Figure 
4): postures that are mature handwriting grasps (peach); pos-
tures that are primarily defined by how the fingers grip the 
pen barrel (blue); postures that primarily use the pen tilt an-
gle (green); postures that are identified by how the hand or 
fingers contact (or do not contact) the tablet (red); postures 
that feature a finger extended in mid-air (yellow); and pos-
tures that are defined by the pressure fingers exert on the pen 
or hand (purple). 

Grip-Specific Postures and Variation Postures 
As a further classification, we distinguish between grip-spe-
cific postures and variation postures. Grip-specific postures 
are those which are defined by the number and manner in 
which fingers grip the pen (e.g. the mature pen grasps shown 
in Figure 1 are examples of grip-specific postures). Variation 
postures are extensions of a user’s normal handwriting pos-
ture that differs by criteria other than how the pen is gripped, 
such as pen angle, finger pressure, and positions of fingers 
not touching the pen. When participants only demonstrated 
such grip-independent aspects as defining features for their 
proposed posture, we classified it as a variation posture. 
When a participant’s posture specified finger grip positions 
within these variations, like gripping the pen higher with tri-
pod or quadrupod grasps, that posture was considered grip-
specific. Note that variation postures can be made grip spe-
cific if the normal handwriting grip is fixed to a certain pos-
ture like Dynamic Tripod. We do this later when creating 
posture sets to evaluate EMG classification performance.  

Posture Ratings 
Figure 4 shows participant ratings for each of the pre-se-
lected postures as well as normal or elicited postures from at 
least three participants (i.e. postures rated by at least three 
participants). We do not formally rank and statistically com-
pare posture ratings since the number of samples differs 
greatly. Our goal is to present an overview to make general 
recommendations rather than empirically argue for superior-
ity of certain postures over others.  

Unsurprisingly, postures that are mature grasps obtained ex-
cellent ratings (peach bars in the figure). The remaining pos-
tures received diverse ratings with wide score ranges, sug-
gesting no consistent preference across participants, but 
some general trends can be observed. 

 
Figure 4. Subjective posture ratings from 1=best to 7=worst 

(scale in graph from 0 for better visibility). Numbers in paren-
thesis are number of ratings. Error bars are std dev. 

Pressure-based postures seem to be the most disliked as they 
required maintaining pressure throughout the task (purple 
bars in the figure). Several participants said this was fatigu-
ing and felt they were less comfortable than other postures. 
However, during the interview, all those participants sug-
gested pressure would be suitable for short-time use, such as 
briefly squeezing the pen to invoke a menu. 

Perhaps the next best group of postures are those using dif-
ferent ways for the finger and hand to grip the pen (blue bars 
in the figure). Simply placing more fingers on the barrel, as 
with Index Middle and Ring Grasp, seems to be largely ac-
ceptable as the stability of the pen is maintained. Conversely, 
Index Thumb Pinch afforded less control with two fingers, 
and so was less preferred. Wrapping fingers around the pen, 
or gripping it higher, was even less favoured due to decreased 
precision. Two participants, however, mentioned that Tripod 
Hold Pen High, provided better screen visibility as the hand 
was not as much "in the way". 

Among the postures involving different orientations of the 
pen (green bar in figure), Pen Upright seems to be moder-
ately acceptable, while Pen Low Angle, used by artists for 
shading and on vertical drawing surfaces, was deemed less 

 
 

 
   

1 2 3 4 5 6

Dynamic Tripod (26)

Lateral Tripod (5)

Dynamic Quadrupod (12)

Index Middle and Ring Grasp (7)

Index Thumb Pinch (3)

Tripod Hold Pen High (6)

Index Middle Wrap (3)

Pen Upright *  (9)

Pen Til t Forward * (4)

Pen Low Angle * (5)

Side Palm * (30)

Floating Palm *  (30)

Extended Index *  (30)

Extended Pinkie * (30)

Grip Pen Firmly *  (30)

Press Ring Index Against Palm *  (30)

Mature grasps:        Fingers on pen grip:        Pen tilt:      
Tablet contact:       Extended fingers:       Pressure:  



 

suitable for writing and sketching. Pen Tilt Forward also re-
ceived intermediate ratings, but like Tripod Hold Pen High, 
it also creates less hand occlusion. 

Regarding the postures based on how the tablet surface is 
contacted with the fingers or hand (red bar in figure), Side 
Palm, which scored very highly in Cami et al.'s evaluation 
[2], was not as well received by participants, mainly due to 
friction when dragging on the display (9 participants), but 
also because of the requirement not to touch the screen with 
the pinkie (2 participants). Two participants deemed the pos-
ture suitable for local input, i.e. when pen input is concen-
trated in a small region and the hand does not need to move 
much, thus minimising friction. Floating Palm, on the other 
hand, did not suffer from such problems leading to better rat-
ings, although three participants commented that this posture 
was fatiguing. Two participants stated that it was close 
enough to their normal handwriting posture, but two other 
participants said that the "floating" aspect reduced stability 
and precision. We also observed that roughly a third of our 
participants kept their arm raised when performing tasks with 
most postures, so Floating Palm may not have felt any dif-
ferent. This inclination to keep the palm raised above the tab-
let in most cases suggests it may not be reliable as a distinct 
input posture. Interestingly, this behaviour is specific to the 
tablet and when using a normal pen on a piece of paper, par-
ticipants naturally rested their hand. Even though people 
were explicitly told that touch had no effect on the tablet, it 
seems they were influenced by long-standing habits of using 
touchscreens, where unintentional touches can lead to unde-
sired consequences. 

Finally, postures with extended fingers into mid-air had 
mixed results. Four participants said it was generally difficult 
for them to straighten a finger while writing, and two who 
used the Dynamic Tripod as their normal posture, said that 
extending the index finger made their grip unstable. As with 
the pressure-based postures, however, the difficulty is 
mainly in maintaining the pose rather than forming it and 
three participants, who rated finger extensions negatively, 
agreed that these postures would be fine for short-time use. 
Extending the index finger was much a less of a problem for 
Dynamic Quadrupod users, since three other fingers re-
mained to grip the pen. This shows that feasible postures to 
some extent depend on an individual’s normal handwriting 
grip. 

DESIGN GUIDELINES 
We examine how these results can be used to inform the de-
sign of posture-based pen interactions. As noted above, be-
yond the tripod and quadrupod mature grasp postures which 
are broadly liked and adopted, there is a wide variety of grips 
for which preferences are not unanimous. These preferences 
can further depend on several contextual factors associated 
with the type of pen task, such as precision requirements, 
whether occlusion is important or not, if and how long the 
posture should be maintained and the degree of friction of 
the screen surface. While it was not possible to cover all 

these aspects in our experiments, we believe we can identify 
some key design guidelines for grip-based pen interaction. 

First, designers should decide if they want to design for grip-
specific postures or variation postures. Considering the fa-
vourable ratings for the mature grasps, if the sensing envi-
ronment supports it, we recommend designing for grip-spe-
cific postures. This allows people with Dynamic Tripod as 
normal posture to use Dynamic Quadrupod as an additional 
posture and vice versa. Furthermore, it makes the posture 
sets clear and unambiguous so that a large number of well 
differentiated grips can be included. Caution is required for 
normal postures, however, as some people tend to vary their 
grip during pen tasks. Some of our participants indeed indi-
cated that they occasionally hold the pen at different angles, 
slightly extend their pinkie, or support their hand by placing 
other fingers on the tablet when writing and drawing. Im-
portantly, they do that unconsciously, meaning that the 
chance of false positives would be a concern if a mode or 
command posture relies on those characteristics for detec-
tion. 

If designing for variation postures, even more care is needed 
to avoid characteristics that overlap with the user’s normal 
grip. Due to the variety of normal pen-holding postures, al-
ternative poses would have to be sufficiently different to 
avoid misrecognitions. In those cases, a good strategy may 
be to first require users to register their normal grip(s). Based 
on the grip pattern of those normal postures, the system could 
then suggest different additional poses to use for modes or 
commands. 

Regarding the general applicability of the different catego-
ries of postures, we need to distinguish between poses suita-
ble for maintained modes (quasimodes) [30] that are both 
comfortable and cause little fatigue, and postures that are 
only appropriate for momentary triggers such as mode 
switches and commands like invoking a menu. For main-
tained modes, we believe using mature grasps (Figure 1) and 
their variations which have at least three fingers on the pen 
to keep it stable, are good candidates. Fingers can be added 
to and removed from the pen barrel to create different touch 
patterns. In this sense, the pen might be considered like a 
flute, with different combinations of finger placement asso-
ciated with different modes.  

For momentary trigger postures, poses using pressure 
("quick squeeze"), finger extensions ("air clicks"), pen tilt 
("flips"), and tablet touches ("taps") are reasonable options, 
with some caveats. For finger extension, since preferences 
and motor skills differ among people, it is safer to allow any 
finger to be extended without specifying which one. For pos-
tures involving tablet contacts, like those proposed by Cami 
et al. [2], there might be issues for people with long nails, as 
was the case for two of our participants. Finally, Floating 
Palm is only practical if it is used with other postures featur-
ing tablet contacts. In the general case, too many people use 
tablets without resting their arms for it to be recommended. 



 

Sensing requirements 
The above recommendations assume that the postures can be 
reliably detected and differentiated by whatever sensors are 
available. Of course, the choice of postures may be heavily 
influenced by the sensing environment and its actual detec-
tion performance. Many of those postures can be detected by 
a grip sensor on the pen, but reliably differentiating them 
might be a challenge, considering their variability among us-
ers. Song et al. note that the recognition of their wrap grip 
was problematic even for the same user [33].  Although, their 
Naive Bayes classification approach can no doubt be im-
proved upon by using modern deep learning techniques. The 
main technological downside of a grip sensor integrated in 
the pen is that it needs to be powered and contain a transmit-
ter. In contrast, postures based on tablet touch and pen tilt 
detection can be supported without significant pen instru-
mentation, increasing their practical appeal. As for body sen-
sors such as EMG, they require equipment to be worn, re-
ducing their current practical deployment. However, the sen-
sor form factor could be made unobtrusive and more conven-
ient with future EMG-sensing wearable devices like smart 
watches or even smart clothing. 

Limitations 
Except for people who have learned to use multiple pen or 
brush-holding poses at a young age, the exercise of propos-
ing alternative pen-holding postures is not easy. We also did 
not ask our participants to consider specific sensing capabil-
ities and we would not expect most participants to be able to 
consider this technical aspect anyway. This is why we also 
included pre-selected postures in the part 2 tests: We antici-
pated that grips using pressure and touching the tablet were 
unlikely to be suggested. The limited time to experiment with 
newly proposed postures also means that it was hard for peo-
ple to gauge their feasibility during prolonged use and in a 
wider variety of contexts. In fact, 5 participants realised 
through the test tasks that some of their proposed postures 
were not as comfortable as they originally expected. Overall, 
14 participants rated at least one posture they proposed more 
than 1 point worse than a pre-selected grip. This even holds 
true when Floating Palm and Side Palm are excluded, which 
can be considered closest to a normal posture. Nevertheless, 
we believe that collectively our investigation revealed rele-
vant issues that designers should consider for posture-based 
pen interaction. 

There are no doubt other postures and tasks that could have 
been considered and investigated, but we had to keep the 
length of our testing session and the scale of our experiments 
reasonable. Despite these limitations, we believe we identi-
fied the main categories of postures as well as their ad-
vantages and disadvantages in terms of ratings informed by 
pen control and interaction comfort. Future work can explore 
more variations of promising types of postures and examine 
their suitability for different kinds of pen tasks. 

Another aspect that we do not address, and one that is critical 
for efficient mode-switching, is quantitative switching costs. 

Some forms of pen mode switching performance have been 
investigated [21], but not for different pen-holding postures. 
It is not clear how easily and quickly people can change from 
one pen grip to another. For instance, we surmise that hold-
ing the pen higher, while potentially comfortable, incurs a 
heavy switching cost. Future work should examine these per-
formance aspects and to what extent selected postures can be 
used for short (mode) and longer/maintained (quasimode) 
switches.  

DETECTION WITH EMG ARMBAND 
We now turn to classifying main postures from the study us-
ing the data collected from the EMG armband. Deep neural 
networks are trained to classify different subsets of postures 
with results reported within and between participants. 

Data Sampling 
To provide a good user experience, the posture should be 
classified as soon as possible on, or shortly after, each pen-
down event. For our experiments, we chose to limit the max-
imum latency to 100ms, which, even after adding data trans-
mission and processing time (~40ms), is an acceptable delay 
to retain a responsive user interface [4]. 

Since the user forms the desired posture before the pen-down 
event, the classifier can make use of the sensor data immedi-
ately before and after the event. Choosing a reasonable value 
for this window length is a trade-off between computation 
time and accuracy [2]. We chose to use a window that cap-
tures 1 second of data prior to pen-down, and 60ms of data 
immediately after. This creates a total sensor data window 
length of 1060ms. Note that since it is the pen-down event 
that triggers a user-perceivable action to be taken based on 
the posture, it is only the 60ms of sensor data immediately 
following the pen-down event that contributes to the latency. 
Since the Myo device has a sampling rate of 250 Hz, this 
corresponds to 1060 × 250 = 266 samples. This window of 
266 samples × 8 electrodes = 2128 raw sensor values consti-
tutes our data input unit to compute a spectrogram in a pre-
processing step. 

Spectrogram Pre-processing 
Spectrograms, also known as magnitude short-time Fourier 
transforms (magnitude STFT), convert time-domain wave-
forms into time-frequency images. Such a time-frequency 
image can then be used for visualising the change in fre-
quency content of a signal over time. Spectrogram features 
have been shown to work well for EMG-based gesture recog-
nition [3], so we convert the raw input data of our sampling 
window into a spectrogram.  

Computation of the spectrogram involves choosing two key 
hyperparameters: the fast Fourier transform (FFT) size, and 
the hop size. The FFT size, which is typically chosen to be a 
power of 2 for efficiency reasons, determines the trade-off 
between resolution in the frequency domain and in the time 
domain. It needs to be chosen large enough to resolve the 
frequencies of interest but will also reduce resolution in time 
as it is increased. The hop size parameter specifies the 



 

number of samples to advance before computing another 
FFT. It determines the amount of overlap between successive 
FFTs. We chose an FFT size of 64 samples (256ms) using 
the standard Hann window and a hop size of 8 samples 
(32ms). This results in the spectrogram having 33 frequency 
bins and 26 time slices (adding up to the 1060ms of our input 
window). We compute this spectrogram for each of the 8 
EMG sensors, resulting in a 3-dimensional array of size 33 × 
26 × 8 (frequency bin × time index × sensor index). 

The resulting spectrograms are globally scaled such that all 
values are in the range [0, 1], normalising by the maximum 
value observed over all training participants. We found this 
to perform considerably better than scaling by the maximum 
value of each spectrogram individually. 

CNN Classifier 
Given the dimensions of our input, we can consider several 
possible neural network architectures to use as the classifier. 
In an attempt to avoid using an unnecessarily complex archi-
tecture, we initially experimented with a simple neural net-
work with three fully-connected layers. Such an architecture 
with three invariant dimensions would be a reasonable 
choice given no knowledge of spatial structure in the input 
spectrogram features. However, given the nature of EMG 
signals, it would be desirable to have some invariance to 
small shifts along the time axis, as well as invariance to ro-
tation of the Myo device around the arm, which corresponds 
to invariance to shifts along the EMG sensor axis. We can 
achieve the desired shift invariances by making use of an ex-
isting CNN architecture originally designed for image recog-
nition tasks if we format our spectrogram features so that the 
"image" height and width dimensions correspond to the spec-
trogram "time index" and "sensor index" dimensions, respec-
tively. We then place the spectrogram frequency dimension 
along the channel dimension (which would correspond to the 
RGB colour channel in the image domain). Since the result-
ing spectrogram "image" resolution is quite low (26 × 8), a 
shallow network should be sufficient, so we use a CNN with 
two convolutional layers. We empirically observed such a 
CNN architecture to perform better than the fully-connected 
architecture, and so we use a CNN in our experiments. 

 
Figure 5. CNN architecture 

The resulting CNN architecture, shown in Figure 5, consists 
of two convolutional layers and two fully-connected layers. 
Each of the convolutional layers has a kernel size of 3×3 and 
is followed by a ReLU activation and a max-pooling layer 
with a kernel size of 2 and a stride of 2 that serves to reduce 
the resolution by a factor of 2. The first convolutional layer 
has 64 channels and the second layer has 128 channels. The 
first fully-connected layer has 500 output units and is fol-
lowed by a ReLu activation and uses dropout with probabil-
ity 50%. The final fully-connected layer is followed by a 

softmax function with the usual cross-entropy classification 
loss. We use the Adam optimiser [20] with 'alpha' parameter 
value of 3e-4. We train with a mini-batch size of 50.   

Model Training and Evaluation 
Dataset splitting 
Since our participants maintained the same posture through-
out each task, we can use all available data when construct-
ing the training datasets. Specifically, we collect a 1060ms 
window of sensor data, advance the start index such that 75% 
overlap between the next window occurs, collect another 
1060ms of sensor data, repeating until we reach the end of 
the data sequence. This results in several partially overlap-
ping windows of sensor data that we found improved valida-
tion accuracy. Validation and testing, on the other hand, need 
to reflect when postures are detected in real applications on 
pen down, so we validate and test only on those events. 

Evaluation Types 
We perform two types of evaluation: within-participant and 
between-participant, reflecting situations where data of a 
new user is included or not when training the classifier. For 
within-participant, this amounts to a new user having to per-
form a calibration step to record user-specific data for train-
ing the model including that data or to fine-tune a pre-trained 
model (transfer learning). This generally results in increased 
recognition accuracy for the user. With between-participant, 
a pre-trained network is used as is, so a new user can imme-
diately use the interaction technique without calibration, but 
at the cost of decreased recognition performance. 

For our within-participant evaluation, we split the data of all 
participants according to task type (recall that our experi-
ments consist of tracing, tapping, sketching, and writing 
tasks). Specifically, we train on the tracing task data, validate 
on the sketching task data, and test on the writing and tapping 
task data. The tracing tasks generate the largest amount of 
data which makes them ideal for training.  Sketching, writ-
ing, and tapping are more representative of real-world tasks 
that could leverage mode-switching or command invocation 
input using pen-holding postures. All task types are however 
sufficiently similar that the data of one task is useful for the 
other types. Our chosen separation is simply to avoid purely 
random splits over all tasks, which would have less ecologi-
cal validity. The training set consists of all EMG data cap-
tured throughout the associated tasks, but the validation and 
test sets only contain data in the time window around pen 
down to reflect when a mode-switch or menu would be trig-
gered in applications. 

Our between-participant evaluation tests the ability of the 
classifier to generalise to participants for whom no training 
data is available. To achieve this, we train the model on 17 
randomly chosen participants (~57% of the total data set), 
validate on 6 other participants (~21%), and test on the re-
maining 6 participants (~21%). Here again, we train on all 
available data, but validate and test only on pen down events. 
Due to the relatively small number of participants, we choose 

Conv 
ReLu 

MaxPool 

Conv 
ReLu 

MaxPool 
Linear 
ReLu 

Drop 
50% Linear 

#classes 33x(26x8) 64 128 500 500 



 

5 random participant splits and average the resulting accura-
cies on the test set to calculate the final value. 

Posture Selection 
We consider two types of train, validate, and test sets focus-
ing on grip-specific postures and variations of normal pos-
tures (grip-specific and variation postures are described ear-
lier). For sets focused on variation postures, we take the par-
ticipants' normal handwriting posture (denoted as Normal) 
and variation postures from the pre-selected set of part 2 of 
the study. For sets focused on grip-specific postures, we 
could simply select only grip-specific poses, but this would 
limit comparisons given there are fewer examples (see lower 
counts for grip-specific postures in Figure 4). Instead, we 
only include participants who use Dynamic Tripod as their 
normal handwriting posture since it is by far the most com-
mon, and consider all postures from the pre-selected set to be 
grip-specific in this case, since they are all variations of Dy-
namic Tripod. 

We evaluate different combinations of postures for which 
sufficient amount of data is available (more than 25 partici-
pants). We do not include postures that can be easily detected 
by the tablet's sensors such as touch contact and pen tilt an-
gle. We are mostly interested in recognising postures based 
on finger grips on the pen, extended fingers and pressure 
(peach, blue, yellow and purple categories in the figures 
above). A comparison with large amounts of data and mini-
mal imbalance between the postures therefore mostly limits 
the posture sets to five postures or less from Figure 4: Nor-
mal or Dynamic Tripod, Ring and Index Against Palm, Grip 
Pen Firmly, Extended Index and Extended Pinkie. 

Classification Results 
Table 2 shows classification accuracy for a variety of com-
binations with the different evaluation types. In addition to 
direct comparisons between grip-specific posture sets for 
Dynamic Tripod users and their variation equivalents, we 

provide results (at the bottom left of the table) for two sets 
that include Dynamic Tripod and other popular postures with 
less data. 

In within-participant evaluations, accuracy is above 70% for 
5-posture sets, and above 78% for groups of 3 and 2 postures. 
There is a notable difference when looking at between-par-
ticipant results. Classification accuracy is only slightly above 
30% for 5 postures, above 50% for 3 postures, and between 
64 and 71% for 2 postures. This shows that the models are 
heavily user-dependent, especially for sets with more than 
two postures. With the Myo, a per-user calibration is almost 
essential (matching how the commercial Myo software also 
requires per-user calibration for mid-air gesture recognition). 
A set of three popular postures (for which switching seems 
relatively easy), Dynamic Tripod, Dynamic Quadrupod, and 
Index Middle and Ring Grasp, have a within-participant clas-
sification accuracy slightly above 80%. This may be suffi-
ciently practical if the recognition algorithm also includes 
temporal consistency-checking measures, such as voting 
schemes across successive EMG frames. 

The differences between grip-specific and variation postures 
are fairly small. This is most likely because the overwhelm-
ing majority of participants used Dynamic Tripod as their 
normal pen-holding grip, so there is not enough data to miti-
gate its overall influence on the model. More data from par-
ticipants using other postures would be required to reduce 
that bias. 

Sensor Limitations 
The results show that the Myo armband can recognise only a 
limited number of pen-holding postures. This EMG device is 
not sufficiently precise to reliably discern fine finger move-
ments within the noisy activity of writing and sketching, es-
pecially for unknown users. However, we do not believe that 
this is a weakness of electromyography per se. The Myo was 
designed more than 6 years ago and is now discontinued. 

Grip-Specific Postures Within 
(train/valid/test) 

Between 
(train/valid/test)  Variation Postures Within 

(train/valid/test) 
Between 

(train/valid/test) 

Dynamic Tripod, 
Ring and Index Against Palm, 
Grip Pen Firmly, 
Extended Index, 
Extended Pinkie 

73.0% 
(19379/922/2938) 

32.4% 
(22299/973/1571) 

 Normal, 
Ring and Index Against Palm, 
Grip Pen Firmly, 
Extended Index, 
Extended Pinkie 

70.3% 
(26084/1226/3859) 

33.2% 
(25926/2143/2055) 

Dynamic Tripod, 
Ring and Index Against Palm,  
Extended Pinkie 

85.7% 
(11763/552/1766) 

53.1%  
(13532/591/951) 

 Normal,  
Ring and Index Against Palm,  
Extended Pinkie 

83.7%  
(16833/779/2459) 

50.8% 
(16656/1388/1325) 

Dynamic Tripod, 
Ring and Index Against Palm,  
Grip Pen Firmly 

78.9% 
(11672/564/1763) 

56.3%  
(13371/587/946) 

 Normal, 
Ring and Index Against Palm,  
Grip Pen Firmly 

80.2% 
(16762/793/2468) 

58.4% 
(16474/1396/1318) 

Dynamic Tripod,  
Ring and Index Against Palm  

88.5% 
(7857/375/1181) 

67.1% 
(9012/398/638) 

 Normal,  
Ring and Index Against Palm 

89.2% 
(12129/564/1769) 

70.5% 
(11862/1022/951) 

Dynamic Tripod 
Extended Pinkie  

89.3% 
(8823/407/1291) 

68.0% 
(9458/571/692) 

 Normal,  
Extended Pinkie 

86.8% 
(12075/551/1736) 

64.7% 
(11758/1004/940) 

Dynamic Tripod, 
Dynamic Quadrupod,  
Index Middle and Ring Grasp 

80.7% 
(7248/335/1041) 

  

Dynamic Tripod, 
Dynamic Quadrupod 

84.3% 
(6316/292/908) 

 

 

Table 2. Within and between participant classification results for grip-specific and 
variation postures. Top grey rows show the results of postures using data from par-

ticipants using only Dynamic Tripod as their normal posture (left) and the corre-
sponding results for normal postures and their variations including all participant 
data (right). Bottom two green rows are for within-participant sets of grip-specific 

postures irrespective of the normal posture used. 

 



 

Future EMG sensors, like the CTRL-labs wristband, might 
have the required sensitivity to enable full hand and finger 
pose estimation in pen tasks [50]. There are also other types 
of body activity sensors that might be suitable [16,26,27,47] 
and time will tell which sensing technology will prevail. We 
imagine future wrist-worn devices with high-precision em-
bedded body sensors that will significantly enhance pen, 
touch, and gestural interaction in general through hand pose 
reconstruction. 

CONCLUSION 
We have presented a formative study using 30 participants 
that investigated alternative pen-holding postures for pen in-
terfaces utilising pen grip for modes or action triggers. Sub-
jective preference ratings of postures elicited from partici-
pants and pre-selected poses informed a set of design guide-
lines for such interfaces. Specifically, we believe that the 
four main normal postures (mature grasps) and variations 
thereof where additional fingers grip the pen are suitable for 
maintained modes (quasimodes), whereas postures based on 
pressure, finger extensions, pen tilts and tablet contacts 
should only be used for quick mode switches. We further 
gathered EMG data via a commercial armband worn by par-
ticipants to attempt to recognise those posture using a deep 
learning model, but we obtained mixed results. For a 3-pos-
ture subset, mean classification accuracy was above 80% for 
within-participant evaluations, but only slightly above 50% 
when evaluating between participants. We believe this is 
mostly due to the quality of our sensor and that future wear-
able devices will be able to reliably detect subtle hand and 
finger motions for enriched pen interaction. 
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