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Fig. 1. The proposed method computes a 3D bounding box from multiple user-specified 2D bounding
rectangles in selected frames of an RGB video covering different viewing angles.

Segmenting and determining the 3D bounding boxes of objects of interest in RGB videos is an important task
for a variety of applications such as augmented reality, navigation, and robotics. Supervised machine learning
techniques are commonly used for this, but they need training datasets: sets of images with associated 3D
bounding boxes manually defined by human annotators using a labelling tool. However, precisely placing 3D
bounding boxes can be difficult using conventional 3D manipulation tools on a 2D interface. To alleviate that
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burden, we propose a novel technique with which 3D bounding boxes can be created by simply drawing 2D
bounding rectangles on multiple frames of a video sequence showing the object from different angles. The
method uses reconstructed dense 3D point clouds from the video and computes tightly fitting 3D bounding
boxes of desired objects selected by back-projecting the 2D rectangles. We show concrete application scenarios
of our interface, including training dataset creation and editing 3D spaces and videos. An evaluation comparing
our technique with a conventional 3D annotation tool shows that our method results in higher accuracy. We
also confirm that the bounding boxes created with our interface have a lower variance, likely yielding more
consistent labels and datasets.

CCS Concepts: • Human-centered computing→ Interactive systems and tools.

Additional Key Words and Phrases: dataset creation, 3D annotation tool
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1 INTRODUCTION
Recent advances in artificial intelligence (AI) have greatly extended the capabilities of computer
vision (CV) to understand natural images and identify objects in them. 3D object recognition from
2D RGB images is an essential task for several kinds of applications, such as augmented reality,
navigation, robotics, and autonomous driving. Public datasets for 3D object detection address a
variety of contexts and scenarios, including city environments [3, 9, 10, 28] and indoor scenes [2, 38].
One of the key requirements of 3D recognition is the estimation of the 3D position and orientation
of particular objects of interest. Recent deep learning techniques make it possible to infer such
3D information [1, 36], but labelled data is required to train the models. There are essentially two
methods to create such datasets: 1) using computer graphics to generate automatically labelled
synthetic data [12, 13, 30] and 2) manual annotation of captured images and videos (real data).
Simulation can generate data at scale with no manual labour, but it is currently not practical for
images requiring a high level of realism or which are difficult to model using 3D graphics. Recent
studies also report “Sim-to-Real” problems with models trained on synthetic data not performing as
well with real-world data [7, 42]. There is therefore still a need for datasets with real-world images
labelled by human annotators and making that process accurate and efficient.
A common type of label for 3D object recognition is a 3D cuboid that envelops the object

(bounding box). For example, the Objectron dataset [1] provides 2D short videos with 3D bounding
boxes enclosing objects of interest. These bounding boxes are manually created and positioned
by human annotators on a 3D world map corresponding to the video scene, ensuring that they
project correctly onto the objects in the video, with adjustments made for other frames where
mismatches occur. While this process is more efficient than annotating each frame individually,
accurately fitting a 3D bounding box to an object in a 2D image remains challenging due to limited
3D perception. Additionally, annotations from different annotators may exhibit high variability.
In this work, we propose an iterative approach and a graphical tool for 3D object annotation

from 2D video sequences that leverage 3D reconstruction techniques and simple image labelling
with 2D rectangles. In the first preprocessing step, a dense point cloud of the scene and the planar
surface on which objects of interest are placed are estimated from the video sequence. The location
of the detected surface can be manually adjusted using the tool. Next, the annotator draws 2D
rectangles on a few frames showing the object from different angles. The 2D rectangles are then
back-projected to the 3D space to extract points belonging to the object and a rectangular cuboid
tightly fitting those points is determined to create the object’s 3D bounding box (Figure 1). These
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bounding boxes can then be used as labels to train a 3D object detection neural network or select
3D objects to remove in videos, as we show in the application scenarios of our technique.
In a user evaluation, we compare our technique with labelCloud, a recent tool to create 3D

bounding box labels for point cloud data [31, 32]. We employ two main metrics to assess the
performance of our tool: 1) 3D intersection over union (IoU) between participant labels and ground
truth, which measures accuracy, and 2) ratios of overlapping regions between the 3D annotations
created by different participants, which measures label consistency. Results show that our method
produces labels with higher accuracy and lower variance (i.e., there is more agreement on the
solution) compared to labelCloud, which suggests that annotations created using our tool are
of higher quality. Based on findings from the study, we discuss advantages of our approach and
challenges to be addressed in future work.

In summary, our main contributions are twofold:
• A novel user interface for creating 3D bounding box annotations of objects in moving 2D
videos using reconstructed dense 3D point clouds from the video and computes 3D bounding
boxes of target objects selected by back-projecting the 2D rectangles.

• We performed our user study with 12 participants to discuss the advantages and challenges
of the proposed interface . The results show that the proposed interface outperforms a 3D
annotation tool (labelCloud [31, 32]) in metrics of annotation accuracy and variance among
participants.

2 RELATEDWORK
2.1 Variance, Bias, and Agreement of Annotation
Object recognition using supervised machine learning requires precisely annotated data. For
2D object detection, annotation errors and inconsistencies in bounding box labels lead to lower
detection accuracy [15, 25]. Conversely, increasing the quality of annotations yields higher model
performance [21]. We hypothesize that datasets with 3D bounding box annotations likely also
contain errors and exhibit high variance, perhaps even more than with 2D labels, considering the
potential for inconsistencies is increased in 3D. We seek to make the 3D annotating process more
robust and straightforward as well as reduce variance among produced labels, by using simpler 2D
labelling interfaces for images with which people are more familiar.
In annotation tasks, ensuring the generation of unbiased and consistent labels is a critical

objective. To assess label reliability, inter-rater agreement has often been used as a key indicator
[5]. In interaction research, there are several studies on annotation tools that consider agreement
an important indicator. Higuchi et al. [11] uses annotation agreement from multiple annotators
for video coding tasks in psychological assessments. For the evaluation of Glance [17], a tool with
which multiple crowdworkers create annotations according to user-entered queries, the rate of
agreement of annotations between crowdworkers is used as feedback on the quality of the query
and annotation results. On the other hand, Tsandilas highlights the limitations of conclusions
solely based on user consensus for gesture elicitation studies [37]. While elicitation studies likely
generate more diverse and diverging results than image annotations for object detection, our user
evaluation takes those considerations into account and we assess the performance of our technique
using participant agreement for the produced annotations as well as accuracy when compared with
ground truth data.

2.2 Object Annotation Tools
Object annotation applications range from fully manual interfaces to create shapes enclosing objects
of interest [8, 20] to more modern tools which include semi-automatic segmentation assistance to
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increase annotation efficiency [6, 14]. Labelme video [41] heuristically determines the 3D positional
relationship for user-specified 2D mask annotations made by the user. LabelAR [16] uses mobile
augmented reality devices to create 2D bounding box annotations of objects for machine learning
detectors, where in the capturing process users are visually guided to move the camera around the
object to cover a variety of angles.
The Pascal 3D Dataset [39] includes an annotation tool where users can select a template 3D

CAD model of an object of interest and then manually position, orient, and resize the model so that
it fits the object in the image. iLabel uses a few clicks on target objects and a multilayer perceptron
to semantically segment objects from a scene captured with a handheld depth sensor [44]. 3D BAT
(3D Bounding Box Annotation Tool) [46] is a web-based tool to annotate 3D LiDAR data of street
scenes. Annotations are created in 3D space and transferred to the image domain using a geometric
model. ARnnotate [29] leverages a hand-trackable AR device, guides the user to manipulate the
virtual 3D bounding box, and supports the creation of a first-person, 3D posture dataset of the
object and the hand grasping it. While these annotation tools aim to reduce the costs of manual
labelling, they all require some form of 3D data as input, whereas our interface works with RGB
videos.

The Objectron dataset [1] is manually labelled by human annotators using a 2D/3D tool. The
application provides a side-by-side view that shows a 2D video frame and a 3D world map obtained
from AR Core / AR Toolkit. Thanks to camera motion tracking and ground plane estimation,
annotators can place bounding boxes on 2D frames that reflect the position and orientation of
desired objects 1. LabelAR provides a similar technique to define 3D object bounding boxes in its
preparation process [16]. However, it can be difficult or tedious to precisely position 3D bounding
boxes in 2D images due to limited 3D perception. This can result in high variance in the produced
labels, as reported by the authors of Objectron in their investigation of annotation consistency for
chair objects. LabelCloud [31, 32] provides a 3D view for visualizing dense point clouds from various
inputs (e.g., LiDAR and coloured point clouds). The tool allows users to place a 3D bounding box for
objects of interest onto a reconstructed surface plane using 3D manipulations. This approach based
on direct 3D positioning may similarly result in imprecision and inconsistencies in the produced
labels.
The goal of this work is to enhance the quality of 3D annotations of RGB videos for object

detection without increasing human labour. Instead of working with 3D objects and tools to
position bounding boxes, annotators need only create 2D rectangles on a few frames with objects
of interest seen from different angles, which we hypothesize yields more precise and consistent
labels.

3 PROPOSED METHOD
We aim to develop a method to create precise 3D annotations for datasets that can be used to train
models for 3D object detection and pose estimation. We consider scenarios where objects of interest
are captured in an RGB video, and 3D bounding box labels defined by human annotators. Like in
3D object recognition datasets ([1, 36], we assume target objects are placed on a planar surface.
The basic idea of our technique is to extract the points belonging to objects of interest from

a dense point cloud reconstructed from the input RGB video and fit a box to those extracted
points (Figure 1). Simple 2D graphical operations are used to define rectangles on selected frames
showing the object from different perspectives. 3D points of the target object are then extracted by
back-projecting the 2D rectangles to the 3D space. Finally, a 3D bounding box is tightly fitted to
the extracted points. We expect this approach to result in more precise and consistent annotations.

1https://google.github.io/mediapipe/solutions/objectron.html (Accessed Feb. 15, 2023)
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3.1 Interface Overview
Figure 2 shows the user interface (UI) of our proposed method. The upper part of the UI shows
(A) a video frame image, (B) projected points onto the frame, and (C) the resulting 3D annotation,
respectively. The user can change the current video frame by clicking on a thumbnail in the timeline
(Figure 2 (D)). The interface provides functions to compute the 3D bounding box of annotated
objects, as shown in Figure 2 (E).

Fig. 2. Interface overview. (A) Input video frame (image view), (B) projected point cloud on the frame (point
view), (C) computed 3D annotation result (result view), (D) video frame thumbnails, and (E) UIs for annotation

Given an input video capturing an object (e.g. a bottle) from various angles, the 3D annotation
process with our tool is as follows (Figure 3): In a preprocessing step, the camera motion and the
3D structure of the scene of the video are computed. Before the user can start with the annotation
process, the surface on which the object is placed needs to be identified via interactive plane cutting.
Next, the user selects a video frame and adds 2D rectangles on the selected image or point views.
Based on those 2D rectangle labels, the system determines the points belonging to the object and
then automatically estimates its 3D bounding box.

3.2 Preprocessing
Typical input data for our annotation tool are shot-clip videos that move around an object of
interest. Figure 4 shows an example of a video of a chair used as source data. From this video,
a structure-from-motion technique is used to estimate camera motion and sparse point clouds
[34, 35]. A dense-point cloud is then obtained using a multi-view stereo algorithm that reconstructs
the details of the captured scene and the target object [4]. For reconstruction, the method samples
14 to 28 video frames from the input video at uniform intervals to reduce computational costs. Next,
the method computes 2D projections of the point cloud on the sampled video frames and shown in
the interface (Figure 2 (D)). The planar surface on which the object is placed (e.g. a table or the
floor) is further estimated by a RANSAC algorithm [45]. The planar surface can also be manually
defined by selecting a set of points in the scene.
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Fig. 3. A process of 3D annotation with the proposed interface

Fig. 4. Preprocessing pipeline: left) input video frames, middle) reconstructed points from structure-from-
motion and multi-view stereo, and right) projected points onto a video frame.

3.3 3D annotation tools
Plane cutting. Automatic plane estimation cannot completely eliminate noise and outlier points,

as shown in Figure 5. Therefore, we include a plane-cutting tool to interactively discard points
belonging to the support plane from the input point cloud. The interface allows the user to change
the (height) threshold of plane cutting, where modifications are dynamically reflected in the point
cloud view. Properly filtering out the support plane allows the points belonging to the target object
to be isolated for easier selection.

Object point extraction from 2D input. After removing points of the support plane, the user can
start defining which points belong to the captured object with 2D rectangle selections. The interface
provides two buttons for such selections to include or exclude points from the object (Figure 6).
To completely remove background objects and walls, the user may need to create more than two
rectangles from different views. There may further be non-target or noise points also remaining
after the background is removed, which can adversely affect 3D bounding box estimation. This can
be remedied by removing points inside the bounding box.

3D bounding box estimation. The interface provides two algorithms for tightly fitting a 3D
bounding box from the object’s 3D points in the width and depth directions. The algorithms assume
that the object is placed on a support plane like in the Objectron dataset [1], so the bottom face of
the 3D bounding box is always facing the plane. The first algorithm is the minimum bounding box
algorithm that finds the cuboid with the smallest volume encompassing the object’s points (Figure
7 top). This algorithm is applicable to most types of object shapes, such as cubic objects, cylinders,
chairs etc. The second algorithm finds the longest edge of object points and uses it as the long edge
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Fig. 5. Plane cutting: plane cutting with original plane height (top), and plane cutting with appropriate
threshold (bottom). Red points and areas denote support planes to be removed.

Fig. 6. Shaping a point cloud with 2D rectangle selections: 1 and 2) removing points outside bounding boxes,
3) computed bounding box with noise points, 4 and 5) removing points inside bounding boxes to remove
noise, 6) fixed bounding box.

of a cuboid. We use this method if the results of the first algorithm are not satisfactory (Figure 7
bottom). In the height direction, the bottom face of the bounding box corresponds to the support
plane and its parallel top face is defined so as to include the highest point of the object. The user
can specify the front face of the bounding box by successively clicking two diagonal corners of the
face.

3.4 User Interface Implementation
We implemented our tool as a web-based application with the front-end developed using p5.js 2 and
the backend server created with the Flask web framework. We used Open3D [45] for point-cloud
processing (e.g., plane estimation).
The web application can output annotation data in 3D and 2D formats, which include camera

position and corner positions of detected 3D bounding boxes for each frame. 2D annotation data
2https://p5js.org/ (Accessed Sep 8, 2023)
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Fig. 7. Two algorithms to estimate the 3D bounding box: minimum bounding box (top), and longest edge
(bottom).

includes reprojections of the 3D bounding box corners on the frames and binary masks of the
regions covered by the bounding boxes in PNG format. This annotation data can be used for several
applications, of which we give a few examples further below.

4 USER STUDY
To evaluate how accurately bounding box annotation data can be created using our tool, we con-
ducted a user study comparing our (proposed) technique to a publicly available 3D annotation tool
(baseline). We hypothesized that our proposed tool would produce 1) more accurate annotations of
desired objects with 2) less annotation variance among participants compared to the baseline tool.
We also sought qualitative feedback from participants to identify shortcomings of the proposed
interface and better understand the needs for 3D annotation of video data.

We considered a scenario where machine learning developers and annotators would like to create
a dataset to build a model for 3D object pose recognition. We recruited 12 participants (Female: 2,
and Male: 10; average age 33.41 (SD: 5.62)) following our institution’s code of ethics. 10 participants
had a background in computer science (CS) education. The others had no CS background but were
familiar with basic PC tasks and office work, which include creating documents, figures and charts.
Seven of the participants with a CS background further had previous experience with annotation
for machine learning.

4.1 Task and Data Preparation
Our task consisted in annotating videos (creating 3D bounding boxes) for 8 categories of objects
(Figure 8) in the Objectron dataset [1]. This dataset contains videos for 9 object categories: bikes,
books, bottles, cameras, cereal boxes, chairs, cups, laptops, and shoes. We prepared two sets of
annotation targets: A and B, with each set containing 8 videos from each of the last 8 object
categories, i.e. we omitted “bike” videos because most of them had mosaic processing to preserve
privacy. For the “shoe” category, participants were requested to label the right shoe.

We sampled video frames (mean: 21.56) from the videos at uniform intervals and used COLMAP’s
structure-from-motion method [34, 35] followed by OpenMVS [4] to obtain a dense point cloud of
the scene. We then ran the RANSAC-based support plane estimation algorithm of Open3D [45] to
find the object’s support plane. The support plane can be obtained by manually selecting three of
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Fig. 8. 8 object types used in our user study from the Objectron dataset [1]

its points, but we used the results of automatic estimation for our study. Note that both proposed
and baseline require support plane information.

4.2 Baseline
As the baseline 3D annotation technique, we employed labelCloud, a recently released tool [31, 32]
which includes several 3D operations to manually place and adjust 3D bounding boxes on point
cloud data.While previous studies typically positioned 3D bounding boxes on sparsely reconstructed
surfaces (Objectron, and LabelAR), our proposed method works with densely reconstructed space
using MVS, so we use dense clouds for our evaluation, which labelCloud also supports. A further
reason for choosing this tool as a baseline is its availability to the public, contrary to the annotation
tools used for Objectron and LabelAR, which have not been made available.
LabelCloud mainly provides two techniques to create bounding boxes; 1) selecting 3 points of

a cuboid, and 2) adjusting the position, orientation, and size of a 3D box with successive mouse
operations. The main differences between the proposed interface and labelCloud are threefold:

• User Input: The proposed method uses 2D rectangles to define object regions of projected
point clouds. LabelCloud directly uses 3D bounding boxes in 3D space.

• View Navigation: With the proposed interface, frames are selected with a cursor on a
timeline similar to a media player. With labelCloud, users navigate the 3D scene with the
point cloud using 6-DoF controls like in 3D modelling and viewing software (e.g., Blender).

• Bounding Box Computation: The proposed interface computes bounding boxes based on
users’ 2D rectangular selections. In labelCloud, the 3D bounding box is directly defined and
adjusted by the user.

4.3 Procedure
Participants used both the proposed and baseline tools to create 3D bounding boxes with sets A
and B. We used a “within-subjects” design for the proposed and baseline conditions so that our
participants with different backgrounds and familiarity with annotation tools could experience both
techniques. This approach helped mitigate potential biases stemming from their differing levels of
expertise. Given the distinct interaction designs of the two UIs, we anticipated minimal carryover
effects when switching to the second technique. However, recognizing the higher potential of
learning effects with the objects to be labelled, we designated the datasets used for the annotation
task as a “between-subjects” factor. To ensure consistent annotation difficulty, we utilized identical
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object types across the datasets. Both sets were to be annotated with an equal number of annotations
for the proposed and baseline conditions.

The order of objects to be annotated in a set was always the same for all conditions (left to right
of Figure 8). In all conditions, participants first practised to learn the use of the interfaces with
example data for about four minutes. They then started the main task with the two tools, one after
the other. We instructed participants to place and tightly fit a 3D bounding box to the target object
as precisely as possible. We also asked them to specify the front face of target objects. We followed
the Objectron dataset for front face orientations. Participants were allowed to ask for help about
the operation of the two tools while performing the tasks. After completing all tasks, participants
filled out a questionnaire about their experience and provided further oral feedback in an interview.

4.4 Evaluation measures
The evaluation of annotation quality typically involves measuring the consistency of annotations
produced bymultiple human annotators (inter-annotator agreement) [5, 11, 17], where an additional
independent measure can be included to ensure that agreement is not merely coincidental [37]. We
therefore used the following two metrics to evaluate the annotations produced by the proposed
and baseline tools.
The first metric is 3D Intersection over Union (IoU) between participant and ground truth

annotations, which addresses annotation precision and (non-)bias criteria. 3D IoU is defined from
0 to 1, with 0 representing no overlap and 1 representing complete overlap, i.e., higher values
indicate higher accuracy. The ground-truth data creation procedure involved two authors reaching
a consensus on object annotations following the guidelines described in Section 4.3, which require
annotations to align with the object’s direction and be as close as possible to the object. The
process was iterative: an author initially created a bounding box using our tool and refined it
using labelCloud. The two authors then reviewed the annotations in 2D and 3D viewers and
each independently determined whether the annotations adequately followed the guidelines. A
consensus was achieved when both authors agreed that requirements were met. If not, the bounding
box was adjusted by its author until a consensus was reached.
The second metric is the ratios of overlapping regions between the different 3D annotations

created by participants, which addresses inter-annotator agreement. The assumption is that if
an annotation is precise, then annotations for the same object by multiple annotators should
largely overlap. The Objectron dataset contains 3D bounding box annotations, with some inter-user
variability for the 3D annotations, as reported by the authors [1]. We consider annotation variance
between participants for the proposed and baseline interfaces. We also used 3D IoU to determine
overlapping region ratios between 3D bounding boxes. In this case, higher values indicate lower
annotation variance among participants.
As explained above, we conducted a mixed design study, where the interface, proposed and

baseline, was a within-subjects factor, whereas the used dataset, A or B, was a between-subjects
factor. For each condition, we obtained annotations from six participants on each dataset. With
each dataset containing eight objects, this results in 96 annotations for the proposed and baseline
interfaces. For the accuracy metric, we computed 3D IoUs for all 96 annotations. For the overlapping
regions metric, we calculated 3D IoUs for all combinations of the six participants’ annotations in
both datasets. We thus obtained 30 IoUs for each of the 8 objects, i.e. a total of 240 samples.
We also recorded task completion times defined as the time from the start of the annotation to

the time the participant declared it complete. We obtained 96 completion time for each interface.
In the post-experiment questionnaire participants were asked to answer 4 questions related

to their experience with each tool on a 7-point Likert scale (ranging from 1: strongly disagree, 4:
neutral, to 7: strongly agree): Q1) I was satisfied with the annotation results, Q2) I was able to
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Table 1. Results of accuracy, overlapping region ratios (3D IoU), and completion times for the annotations. In
the average column, * (p < 0.01) indicates the significance within the conditions revealed by theMann–Whitney
U test.

Object mean accuracy (SD) mean overlap region ratio (SD) mean completion time (SD)
proposed baseline proposed baseline proposed baseline

book 0.87 (0.03) 0.81 (0.07) 0.95 (0.03) 0.77 (0.10) 104.2 (56.4) 129.1 (89.2)
bottle 0.80 (0.03) 0.75 (0.07) 0.88 (0.09) 0.71 (0.08) 94.5 (52.0) 139.8 (75.1)
cereal 0.90 (0.03) 0.85 (0.08) 0.96 (0.02) 0.85 (0.05) 88.9 (37.5) 119.0 (35.8)
chair 0.93 (0.05) 0.85 (0.05) 0.95 (0.05) 0.85 (0.06) 102.0 (44.7) 85.4 (34.9)
cup 0.87 (0.04) 0.78 (0.10) 0.97 (0.04) 0.72 (0.11) 68.7 (25.3) 119.5 (47.4)
shoe 0.89 (0.03) 0.88 (0.06) 0.89 (0.06) 0.85 (0.06) 78.3 (37.6) 89.7 (26.2)
laptop 0.80 (0.03) 0.81 (0.07) 0.89 (0.05) 0.80 (0.06) 280.8 (159.4) 75.1 (23.8)
camera 0.83 (0.07) 0.82 (0.07) 0.88 (0.08) 0.78 (0.06) 159.5 (84.4) 80.0 (25.0)

average 0.86* (0.06) 0.82 (0.08) 0.92* (0.07) 0.79 (0.10) 122.1 (98.6) 104.7 (43.9)

create annotations quickly, Q3) I was able to place bounding boxes precisely, Q4) The tool was
easy to use. Note that Q2 asks participants’ subjective perception of their task efficiency for each
condition. Finally, interviews were conducted, where participants were asked about the pros and
cons of each tool as well as suggestions for possible improvements.

Statistical tests were performed on the collected evaluation results. We also adjusted the results
of p-values using the Benjamini–Hochberg procedure for multiple comparisons.

4.5 Results
Table 1 shows the results of the mean overlap region ratio (3D IoU) for each object and its average.

We confirm that the observed difference is statistically significant using a Mann–Whitney U
test (the Anderson-Darling test did not reveal normality for the results of both interfaces) with
𝑝 < 0.0001 (𝑟 = 0.17). Figure 9 (right) shows the distributions of the accuracy results.

Table 1 also shows the results of the mean overlap region ratio (3D IoU) for each object and its
average. For all object types, the proposed interface outperforms the baseline. We confirm that the
observed difference is statistically significant using a Mann–Whitney U test (the Anderson-Darling
test did not reveal normality for the results of both interfaces) with 𝑝 < 0.00001 (𝑟 = 0.11). Figure 9
(right) shows the distributions of overlap region ratios.

The results of mean and median task completion times are similar. The mean values for the
proposed and baseline interfaces are 121.02 (SD: 86.86) and 109.49 (SD: 51.28) seconds, respectively.
The median values for the proposed and baseline interface are respectively 92.5 and 96.5 seconds.
As the Anderson-Darling test did not confirm normality for the results of the proposed interface,
we used the Mann–Whitney U test to determine significance. The test did not show a statistically
significant difference in the results of task completion time (𝑝 = 0.300).
Figure 10 shows the results of participants’ responses to the four questionnaire questions. The

results of Q1, Q2, and Q3 are similar for both interfaces. For Q4 (Easy to use), the median values of
the proposed and baseline interfaces are 5 and 2, respectively. However, a Wilcoxon signed-rank
test did not reveal significant differences in all questions.
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Fig. 9. Violin plots of results: Distributions of accuracy (left), and overlapping region ratios for the annotations
(right). The three horizontal bars in each plot denote minimum, median, and maximum values respectively

Fig. 10. Box plot for questionnaire results. Red dots show outliers.

4.6 User Feedback
Operability. Several participants stated that the proposed interface was easier to operate than

labelCloud3: “(For the 2D interface) I felt it was easy to check if the annotation was done well. I was
confident about the result”; “With the 2D interface, the operations were easy”; “the 2D interface was
good and intuitive”; and “Pattern A could be displayed by cutting the outside of the rectangle, so it was
easy to check whether it was done well. I was confident that it was properly done.”.

Challenges of annotating specific objects. Several participants mentioned challenges of annotating
some of the objects: “With the 2D interface, annotating laptop and camera objects was difficult for me
while other objects were easy”; “It was hard to include the camera strap and points behind the screen
in dataset A (proposed)”.

Negative effects of limited viewpoints. Several participants mentioned the negative effects of the
limited viewpoint of the proposed method: “Pattern A (proposed) was not captured from all directions
of the object, so it was sometimes difficult to check that the point cloud corresponded to the object”;
“The limited viewpoint meant that it was not possible to make the object’s straight line parallel to the
3Participant quotes are translated from Japanese, language in which the study was conducted.
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window of deletion and delete the point cloud alongside the object”; “The 2D version was stressful,
because I couldn’t view the object from angles I wanted”; and “I felt that it was easier to improve the
accuracy with B( baseline) than with A (proposed) because there is more freedom to look from different
viewpoints”.

Confidence of 3D annotations. Participants mentioned an advantage of the baseline to check
results of annotations in 3D viewpoints: “It was easy to see the 3D position of the bounding box with
the 3D interface”; and “In contrast to the 3D interface, annotations of the 2D interface were not so clear
based on what they looked like and whether they were correct or not. It would have been nice to have a
view that can be displayed in 3D and rotated”.

4.7 Discussion
The result of the user study confirms our hypothesis that 3D bounding boxes created with our
tool resulted in higher accuracy with respect to ground truth data and lower annotation variances
between participants compared to the baseline interface. Figure 11 shows objects and their anno-
tations using the proposed and baseline interfaces from 6 different participants 4. The proposed
interface uses bounding box computation algorithms based on extracted dense point clouds.
With the proposed method, participants enclosed points of objects to label using 2D rectangles
instead of manually placing a 3D box annotation.

Fig. 11. Annotation variances: each lines of cuboids show 3D annotation from 6 participants. Upper) results
of the baseline and bottom) results of the proposed interface.

We observe that the difference in accuracy between the proposed and baseline methods is not
as pronounced as the overlap regions. Moreover, there was a discrepancy between the results of
accuracy and overlap ratios for objects like cups in the proposed method. This represents cases
where, despite a high level of agreement among participants, the accuracy was not high, as shown
in Figure 12. This is because the reconstruction of objects captured from limited viewpoints may be
incomplete. To address this, it is important to ensure objects are captured from multiple different
angles, or in the case of videos, where this is not possible, correct imperfect annotations post
capture, similar to how the ground truth data was created. Our tool could possibly be extended to
prompt the user to check produced annotations when it detects that object capturing angles are
too narrow in the source data.
4We utilized two datasets, A and B. Every participant among the 12 participants for one of these datasets using the baseline
and proposed methods. Consequently, the annotated results from a particular method on one dataset would be from six
participants.
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Fig. 12. Ground truth (green) and six annotations by the proposed interface (blue). Left: annotations of a chair
have high agreement level among participants and high accuracy with the ground truth. Right: annotations
of a cup have high agreements among participants, but offsets between annotations and the ground truth
exist.

Participants’ feedback highlighted the benefits of our tool with its 2D-based manipulations
compared to labelCloud and its 3D interface. With our tool, the user inputs are simply 1) adjusting
the plane cutting threshold and 2) defining 2D bounding boxes from different views. In contrast,
labelCloud requires users to place 3D bounding boxes, and then repeatedly adjust their position
and orientation.

We also observed cases where manipulations with our tool were more time-consuming, as shown
in Table 1. Specifically, reconstructed point clouds of laptop videos in the study contained noisy
points due to reflections of the laptop screen. Participants thus needed to carefully find and remove
those noisy points in addition to the rectangle selection operations. Furthermore, participants
reported difficulties with our tool to remove noisy points that were hard to see due to viewpoint
constraints. In contrast, the 6-DoF view navigation of labelCloud has the benefit of allowing visual
confirmation of object points from arbitrary perspectives. A simple improvement to our application
would therefore be to add a full 3D view with 6-DoF view navigation to the 2D rectangle interface
in order to handle those edge cases.

5 LIMITATIONS AND FUTUREWORK
While our proposed tool produces more consistent annotations for most videos, it relies on objects
to annotate having sufficient perspective coverage in the input data, which may not always be the
case. In the Objectron dataset, there are several video clips where objects are captured from limited
viewpoints. In such cases, the object may only be partially reconstructed due to occlusions, with
points at the back missing. As a result, the computed 3D bounding box using our method may
not enclose the entire volume of the original object. Furthermore, the Objectron dataset includes
video clips with mosaic content to preserve privacy, which may affect object reconstruction with
structure-from-motion and multi-view stereo. To overcome those limitation, we plan to investigate
point cloud interpolation methods for reconstructed points [26, 43] that help restore object volumes.

To circumvent the constraint of limited viewpoints with 2D frames from an RGB camera, objects
of interest could be captured with a handheld depth camera, which would allow 3D point clouds
to be produced in real-time and of higher quality, so that annotations could be created directly
at capturing time. LabelAR [16], for instance, produces annotations in real-time using camera
self-positioning.
A limitation of our user study is the biased participant distribution. In the study, we recruited

10 of 12 people with a computer science background. In addition, there were only two female
participants. While video annotation might often be conducted by individuals without a computer
science background, diverse users could produce different outcomes when interfacing with either
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the proposed or baseline systems. However, this limited participant diversity of our study hinders a
comprehensive analysis of potential background-based differences.

Another limitation is our gauge of participants’ subjective experiences through our questionnaire.
The task completion times varied depending on the object types, leading to potential discrepancies
in participants’ perceptions of subjective speeds, as shown in Table 1. Additionally, the effects of
long-term usage for either tool were not explored, leaving the level of achievable efficiency and
performance with prolonged use uncertain.
For future research, it would be invaluable to conduct a more in-depth study with participants

from varied backgrounds (especially no computer science background). This would allow a bet-
ter understanding of their annotation performance and subjective experiences with dedicated
questionnaires (e.g., User Experience Questionnaire [18, 33]).

6 APPLICATION SCENARIOS
We show application scenarios, which use the labelled data produced by our proposed interface
(i.e., 3D bounding box annotations or masks).

6.1 Dataset Creation for 3D Object Recognition
One of the main goals of our tool is to support the creation of object detection datasets like Objectron
[1] and OnePose [36]. Such datasets contain moving videos capturing a particular static object of
interest and corresponding 3D annotations (bounding boxes). Annotation data for these videos
include camera and 3D object poses (i.e. position and orientation) typically estimated by camera
tracking techniques such as ARCore 5 and COLMAP [34, 35]. The proposed interface can be used
to annotate any object in such moving videos and output 3D annotation data.

Figure 13 shows a sample dataset for 3D recognition of daily objects using the proposed interface.
The dataset contains object categories that are not included in existing dataset such as Ojbectron
and OnePose [1, 36], e.g. sanitizers, supplements, and speakers. The dataset can be used for 3D
pose recognition of further object categories (Objectron [1]) and specific items (OnePose [36]).

Fig. 13. Example results of 3D annotations for daily object recognition

6.2 Removing Objects from Videos and Reconstructed 3D Scenes
Editing reconstructed 3D spaces from moving videos is another key application of our tool. Recent
advancements in computer vision make it possible to reconstruct 3D scenes from smartphone
videos [22–24], where these scenes may sometimes contain objects that the user would like to
remove. Deleting such objects requires a binary mask indicating the location of the object to be
removed in each frame, which our tool helps to produce more efficiently.
5https://developers.google.com/ar/reference (Accessed Sep. 8, 2023)
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Figure 14 shows an example of an outdoor scene reconstructed using Instant NGP [23]. The
scene contains a triangle cone, which can be removed using the 2D object masks of projected 3D
bounding boxes (Figure 14 (C)) created by our tool 6. The object masks can also be applied to deep
learning-based video inpainting applications [19, 27, 40] that remove specified objects in video
frames and fill the gaps with with visually coherent background or context.

Fig. 14. Example of a reconstructed 3D scene containing an object to be removed. (A) Input video. (B)
Reconstructed 3D scene [23]. (C) Video with object masks created with our tool. (D) Reconstructed scene
with the object removed.

7 CONCLUSION
This work proposes a method to create 3D bounding box annotations of objects in RGB videos
using shaping from generated dense point clouds and 2D selection rectangles in a few frames.
We developed a user interface with functionality to support this process including plane cutting,
shaping points from 2D rectangles, and 3D bounding box estimation from 3D object points. We
performed a user evaluation to investigate the effectiveness and usability of the proposed interface
compared to a publicly available annotation tool. Results showed that the proposed interface
outperforms the baseline asmeasured by annotation accuracy and overlapping region ratios between
user annotations. Based on those results and participant feedback, we discussed advantages and
drawbacks of the proposed interface and presented suggestions for possible improvements. Finally,
we illustrated how our proposed interfaces could be used in concrete application scenarios which
rely on 3D annotations of objects in videos as input. We are considering publicly releasing our
method as a plugin for existing annotation software in the future.
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