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ABSTRACT

We introduce a new pen input space by forming postures with
the same hand that also grips the pen while writing, draw-
ing, or selecting. The postures contact the multitouch surface
around the pen to enable detection without special sensors. A
formative study investigates the effectiveness, accuracy, and
comfort of 33 candidate postures in controlled tasks. The
results indicate a useful subset of postures. Using raw capaci-
tive sensor data captured in the study, a convolutional neural
network is trained to recognize 10 postures in real time. This
recognizer is used to create application demonstrations for
pen-based document annotation and vector drawing. A small
usability study shows the approach is feasible.
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INTRODUCTION

Pen interaction makes drawing and writing natural and precise,
but current applications still require frequent use of graphical
user interface (GUI) buttons, menus, and widgets for actions
like switching direct manipulation tools (e.g. selecting, inking,
or highlighting), setting attributes (e.g. stroke colour or thick-
ness), and issuing commands (e.g. using contextual menus
or pen gestures). However, GUI menus and toolbars take up
space and can be error prone to use [36], so increasing the pen
input space to reduce GUI use is an important goal.

Researchers have proposed and evaluated many pen input
techniques including pen-only methods like special stroke
shapes [13, 18], barrel buttons [18] and manipulating the pen in
detectable ways [33]. When a pen is combined with multitouch
(typically called “pen+touch”), touches with the non-dominant
hand have been used for gestures [21], postures [41], or to
indicate object context [15, 26] and change the mode of the
pen held in the other hand. Our work combines pen input and
multitouch differently: We use the tablet touch sensor to detect
user-controllable hand postures while that same hand grips the
pen to write, draw, or manipulate graphical objects.
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Our idea stems from insights into how people hold writing
tools. Most adults use a variation of a dynamic tripod grip [31,
28, 6] where the thumb and index fingers work in opposition,
and a third finger (typically the middle) provides extra stabi-
lization. This is a type of precision grip [19] which balances
requirements for a firm hold of the pen with the ability for
its independent manipulation [25]. The ideal writing posture
rests part of the hand or fingers on the writing surface [31], but
people can control a pen with the hand in the air, especially
for less precise pen input tasks [39, 20]. A detailed exami-
nation of hand postures while using digital pens also showed
diversity of grips [37]. These observations suggest that there
is room for people to modify their hand posture, in terms of
how individual fingers or hand contact the surface, while still
maintaining a precise grip with the index and thumb. However,
there was an open question whether intentional touches can be
made with the same hand while using the pen, and how such
touches can be effectively used for input.

Our proposed unimanual pen+touch input space is created
by detecting when users consciously adjust how their hand
posture contacts a surface while maintaining a precise pen grip.
The palm can touch with its side, heel, or just float; the index
and thumb can slide down to touch the surface beside the pen
tip, and the middle, ring, and pinky fingers can contact the
surface outside or inside the palm area. These combinations
suggest 324 theoretical postures, but most are impractical. We
identify a candidate set of 33 postures to evaluate.

We evaluate these postures in terms of pen control and subjec-
tive preference using a representative set of controlled tasks
with 15 people. Our results show there is a large subset of
practical postures. During the evaluation, we also logged all
touch input data, including frame images capturing the raw
capacitive signal. We use this to train a deep neural network
to recognize 10 postures in real time with 91.4% average ac-
curacy (96% best case). Using the recognizer, we illustrate
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Figure 1: Varying pen grip posture to change input modes: (a) resting

side of palm writes; (b) resting heel of palm highlights; (c) contacting

extended pinky erases; (d) touch index beside pen for gesture commands.

Pink and blue regions show where palm and fingers contact the surface.
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how the postures can be applied to document annotation and
vector drawing, two common pen applications with frequent
mode switching. Our prototype is designed as a system ser-
vice that runs in the background to inject commands into
real applications using a configurable mapping of postures
to short-cut keys and other actions or widgets. This enables
the technique to trigger tools, make attribute selections, and
invoke commands. A final study uses the applications to vali-
date the usability and usefulness of the interaction space and
interactive recognizer performance.

Our contribution is a new pen input space validated in terms of
basic usability, usefulness, and feasibility. Since our uniman-
ual techniques do not involve the non-dominant hand, they
are compatible with bimanual pen+touch techniques, and with
some limitations, also work with pen-only mode switching
methods such as using an eraser button or pressure. Further-
more, unimanual pen+touch likely requires less screen space
than bimanual methods, thus making it more suitable for small
tablets and perhaps even smartphones. The objective is not to
replace existing mode-switching techniques, but to propose a
pen input space that complements and extends previous meth-
ods. Our design space exploration and recognition method
show the unimanual pen+touch concept is feasible, and sets
the stage for future comparative studies.

RELATED WORK

Mode-switching and command activation are critical to inter-
action, and many pen input techniques have been proposed
for these tasks. However, using different postures performed
while maintaining and using the standard tripod precision pen
grip posture has not been previously explored.

Pen Input Techniques

Given how critical mode-switching is, it is not be surprising
that researchers have examined it in detail [18], and proposed
techniques and approaches to make mode-switching, and pen
input in general, more powerful.

One family of techniques can be thought of as bringing tool-
bars closer to the pen. These include Tracking Menus [8],
Springboard [14], and the Trailing Widget [9]. These still re-
quire screen space, but reduce movement time. Another family
of techniques use gestures to hide or eliminate toolbars, such
as Marking Menus [17], Hover Widgets [11], or the Scriboli
delimiter [13]. Some are fast and some are slow, and since a
gesture is defined by movement, it can be hard to smoothly
differentiate it from movement for direct manipulation. Re-
gardless of possible issues with these families of techniques,
our method is compatible with them. For example, a Spring-
board, Tracking Menu, or Marking Menu could be shown only
when using a certain hand posture since most gestures are
independent of the hand posture used to grip the pen.

A third family of techniques exploits other pen input channels,
such as pressure [27], rolling the pen barrel [2], tilting [43].
A fourth family of techniques changes modes based on how
the pen is manipulated. This is as simple as inverting the pen
to use the “eraser” end or pressing a barrel button [18], to
bending the pen shaft [7], and creating a new pen-like device
with 26 unique ways to contact the drawing surface [37]. Our

technique may be less compatible with these techniques since
they require non-standard pen manipulations.

Related to the last set is Song et al.’s grip detection pen [33].
By wrapping a capacitive sensor around the barrel and adding
motion sensors, the pen can detect how it is held (e.g. a power
grip) or how it is manipulated (e.g. shaken, pointed). Our input
space is different: we do not sense how the pen is gripped,
we look for ways to vary the hand posture around a standard
precision grip; we only modify behaviour when the pen is used
as a pen; and our technique requires no special hardware.

Combining Pen and Touch

With the rise of multitouch input, multiple ways to com-
bine pen and touch have been proposed. Yee’s early experi-
ments [44] followed by Brandl et al.’s [3] showed how biman-
ual pen and touch can work as two independent input sources.
Wu et al. [41] used the shape of the non-dominant hand on
the surface to set a mode for non-dominant hand pen input.
Matulic et al. [21] expanded this idea to using non-dominant
hand touch gestures to set the pen mode, and performed exper-
imental studies of its effectiveness [20].

Hinckley et al.’s Pen+Touch interaction vocabulary combines
non-dominant hand touch with dominant hand pen in a more
integrated and context-sensitive way. Their principle is “the
pen writes, touch manipulates, and the combination of pen
+ touch yields new tools”. Combined pen and touch actions
trigger a mode-switch based on the context of a graphical
object. For example, dragging the pen off a photo held by the
other hand triggers a copy mode. Pfeuffer et al. [26] show how
the pen+touch concept can be applied to mobile tablets with
smaller screens using only the non-dominant thumb. Since
our technique only uses a single hand, it is compatible with
bimanual pen+touch techniques.

The only truly unimanual pen+touch technique we are aware
of are two demonstrations with Conté [37], an unconventional
pen-like device. In one example, laying the pen-like device flat
on the surface enables a mouse mode with ‘clicks’ enabled by
same-hand touch input. Another example controls guideline
placement using the thumb touches while the same hand holds
the device on the surface. Conté is not a conventional pen, and
neither of these techniques explores same hand touch patterns
while holding a pen in a precision grip.

Our work combines pen input and multitouch differently from
previous pen+touch research: We use the tablet touch sensor
to detect user-controllable hand postures while the same hand
grips the pen and performs input actions like writing, drawing,
or object manipulation. This potentially creates a very large
input space, which we detail and discuss next.

UNIMANUAL PEN+TOUCH INPUT SPACE

Our focus is on the interaction space created when standard
pen input is combined with touch input performed at the same
time with the same hand that holds the pen. This simultaneous
unimanual pen+touch, is different from alternating between
pen and touch input with the same hand, such as tucking the
pen in the palm when touching the surface (called "palm-
ing" [15, 37]). Finally, we focus on interactions where the pen



is manipulated with a precision grip. This is different from
using nearby touches while the device lays on the surface [37].

To make implementation practical, we constrain postures to
those identifiable by the pattern created by surface contacts, an
approach demonstrated for touch-only input [22]. Although
additional pen grip postures could be recognized with an in-
strumented pen [33], or cameras capturing the hand above
the surface, we define postures detectable on current touch
sensitive devices. One way to think about this approach is
to use touch data otherwise discarded by palm rejection [30]:
Before running a palm rejection pipeline, check to see if a
unimanual posture is recognized. If so, use the posture as
input then reject all associated touches. Otherwise, simply
process with standard palm rejection pipeline.

Input Degrees of Freedom and Notation

Although precision pen grips often use part of the middle finger
for a third stabilizing part of the grip (forming a “tripod”), not
all adults use a third finger [31] and we found it is possible
to maintain a precision grip with only the index and thumb
by using the index finger side for stabilization. We test the
validity of this in the controlled study to follow.

To describe and reason about possible hand postures achiev-
able as variations of the tripod grip, we consider six degrees
of freedom defined as the types of touch contact made by the
palm and the five fingers (Figure 2):

• Palm Contact (Side, Heel, Float): While writing, the palm
can contact the surface on its side, near the wrist (heel), or
float with no contact. This creates 3 variations.

• Grip Finger Contact (Thumb, Index) × (touching, not touch-
ing): The two primary tripod grip fingers, the index and
thumb, can be independently slid down the barrel of the pen
to touch the surface immediately beside the pen nib. Two
fingers with two independent states create 4 variations.

• Non-Grip Finger Contact (Middle, Ring, Pinky) × (In, Out,
not touching): The other three fingers can independently
touch the surface when extended outside the hand or curled
inside the hand, or not touch the surface at all. Three fingers
and three states create 27 variations.

Theoretically, this allows for 324 possible postures (3×4×27)
with at least a basic level of precision since the tripod grip
remains minimally altered.

To make referring to postures more concise in text, figures,
and tables, we introduce standard notation. In written text,
postures are named as a compound set of words: the palm
contact type is always given (Float, Side, Heel); if the grip
finger is named (Index, Thumb), then it is touching; and the
name of the non-grip fingers are given with the postfix In
or Out when touching (e.g. MiddleIn, MiddleOut, ...). For
example: Side-Index-PinkyOut means the palm is contacting
on the side, the index is touching just beside the nib, and the
pinky is touching outside the main hand contact. In addition
to this long form, we also use a condensed notation of initial
letters: S, H, or F for palm state; T and I if grip a finger is
touching; M, R, or P if the non-grip finger is touching outside

the palm; m, r, or p if the non-grip finger is touching inside the
palm. If a finger is not touching, a dash - is used. For example,
the condensed form of Side-Index-PinkyOut is (S-I--P). Figure
2 provides more examples of long and short notation.

Reduced Set of Candidate Postures

Although this large set of postures might be physically achiev-
able, many are clearly uncomfortable or difficult to perform
due to individual flexibility, dexterity, and hand anatomy. A
3-person pilot tested all finger states across all palm states us-
ing a simplified version of the experiment protocol described
in the following section. This led to a set of rules: (1) In
general, grip finger and non-grip finger states should not be
combined. If an index or thumb finger is touching, then the
middle, ring, and pinky must not be touching, and vice versa.
(2) The ring finger should move with the pinky or middle
finger, since independent ring finger movement is difficult.
(3) Splitting non-grip finger positions to be both Out and In
should be avoided in most cases.

Using these rules, we reduced the 324 possible postures to 33
candidates for further investigation. The first 30 candidates are
created by combining the 10 specific grip and non-grip finger
states (Table 1 top) with all three palm states. The remaining
3 candidates are special postures that include specific palm
states (Table 1 bottom). Float-MiddleOut-RingIn: Having the
middle and ring finger spread is generally uncomfortable, but
less difficult with the floating palm state. Float-MiddleOut-
RingOut: We found this comfortable with floating palm, but
difficult with other palm states. Side-Thumb-Index-MiddleOut-
RingOut-PinkyOut: This was one case where combining grip
fingers and non-grip seemed feasible.

Finger States Combined with all Palm States

no fingers touching (*-----) Index (*-I---)
Thumb (*T----) Thumb-Index (*TI---)
PinkyIn (*----p) PinkyOut (*----P)
MiddleOut (*--M--) RingIn-PinkyIn (*---rp)
MiddleOut-RingOut-PinkyOut (*--MRP) RingOut-PinkyOut (*---RP)

Additional Postures using Specific Palm States

Float-MiddleOut-RingIn (F--Mr-)
Float-MiddleOut-RingOut (F--MR-)
Side-Thumb-Index-MiddleOut-RingOut-PinkyOut (STIMRP)

Table 1: Reduced Set of 33 Candidate Postures: the 10 finger states in the

top are each combined with 3 palm states to create 30 different postures;

the 3 postures in the bottom include specific palm states.

EXPERIMENT: POSTURE SUITABILITY

The primary goal of this experiment is to evaluate the can-
didate set of postures in terms of subjective preference and
pen control. We do this by asking participants to complete
a set of synthetic, but representative pen input tasks using
each posture, during which we measure accuracy relative to a
target stimulus as well as movement time. We then ask for a
posture preference rating that considers comfort and control.
The results are used to create design guidelines for unimanual
pen+touch postures for specific types of interactions in appli-
cations. An additional goal of this experiment is to collect
data to train a posture recognizer using machine learning.
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Figure 2: Input space examples and notation: (a) side, heel, or floating palm contact; (c) touching pen grip fingers to the surface near the pen tip; (b)

extending and touching non-grip fingers outside or inside the palm; (d) examples of complete postures. The dark pink regions show where the palm

contacts the surface and cyan circles show where fingers contact the surface.

Participants

We recruited 12 right-handed participants, ages 20 to 36, of
which 5 were female. The right-handed requirement reduced
variance due to handedness (we also ran 3 left-handed par-
ticipants which we discuss later). Participants were recruited
using on-campus flyers and word-of-mouth, and received $20
for successful completion of the study.

Apparatus

A Wacom Cintiq 22HD Touch pen tablet (1920×1080 px,
47.5×26.7 cm, 4.04 px-per-mm) was connected to an Intel
NUC (Windows 10, Core i7 3.50 GHz 8GB RAM) to run the
C# (.NET) application. Care was taken so computation and
logging did not introduce any noticeable latency.

The Wintab API provided logging of pen tip coordinates, pen
hover distance, pen pressure, and pen orientation at 140 Hz.
The Wacom Feel™ Multi-Touch API provided raw capacitive
data as 122×70 px grayscale bitmaps as well as ’finger’ input
events as an array of (max 10) touch ellipsoids at 100 Hz. The
Wacom API did not send raw capacitive data when only the
palm was touching the screen. As a workaround, we placed a
capacitive presence in the top left corner to simulate a finger.

Tasks

We designed a set of generic pen input tasks indirectly derived
from those originally suggested by Buxton [4]. The tasks are
categorized as constrained or unconstrained, based on how
restricted the pen movements are for task completion. The
accompanying video also provides task demonstrations.

Constrained

The constrained tasks (Figure 3) simulated different atomic
patterns of pen interaction with the aim of getting quantitative
data on accuracy. Each task is presented as a pattern of grey
‘dots’ (tapping tasks) or ‘paths’ (tracing tasks) rendered on a
black background. All dots are 4mm in diameter and all paths
are 4mm thick. A green dot indicates the next dot to tap or the

start of the next stroke. Paths also had a red ‘cap’ to indicate
the end of the stroke.

Since one objective is to measure how accurate taps or strokes
are compared to visual targets, the 4mm size functions only as
a stimulus, not a strict boundary. Liberal acceptance thresholds
ensured participants tapped or stroked on the expected target.
Any tap less than 10mm from the edge of the current dot was
accepted. For lines, any stroke that began within 10mm from
the start, ended less than 15mm from the end, and had a length
within 33% of the line length was accepted.

(a) Linear Tapping (b) Clustered Tapping

(c) Horizontal Lines (d) Vertical Lines

(e) Loops (f) Large Crosses

20

60

(g) Small Crosses (h) Rectangles

20 20

80

190

190

Figure 3: Constrained Tasks (see text). Colours altered for print.

The seven constrained tasks are:

Linear Tapping: Tapping left-to-right on 4 dots evenly spaced
along a 19 cm horizontal line. Represents short tasks like
tapping buttons with larger hand movement between.



Clustered Tapping: Tapping on two clusters of 4 dots spaced
15cm apart. Represents pushing a sequence of buttons on a
menu or tool palette.

Horizontal Lines: Stroking two 19cm horizontal lines in both
directions. Represents long strokes requiring large hand move-
ment, like dragging an object across the screen.

Vertical Lines: Stroking along two 8cm vertical straight lines,
in both directions. Represents long strokes requiring large
hand movement, similar to the above.

Loops: Tracing a path with 4 loops, left-to-right, with each
loop being 3cm tall, and the total path being 19cm wide. Rep-
resents long non-linear movements, like drawing or writing.

Big Crosses: Tracing two diagonal paths forming a cross, with
both paths fitting in a bounding 6cm diameter circle, spaced
7cm apart. The top-left stroke was completed first. Repre-
sents larger off-axis pen movements with small amounts of
palm motion, such a large stroke-based menu or manipulating
objects (e.g. scaling or translating).

Small Crosses: As above, but the two diagonal crosses fit in
a bounding 2cm diameter circle and were 15cm apart. Repre-
sents small pen tip motions with no palm movement, such as
gestures or fine object manipulation.

Rectangles: Tracing two rectangular paths that fit in bounding
2cm diameter circles, 15cm apart. The direction is clockwise
starting at the top-left. Similar to small crosses, but requires
sharp pen tip direction changes.

Unconstrained

The unconstrained tasks (Figure 4) represent more common,
integrative pen motions. These tasks were accepted as com-
plete when the user pressed a "done" button.

Drawing: Copying a smiley face presented on the left side
of the display into a 73×73 mm square. The experimenter
monitored the participant to ensure they drew all parts (head,
eyes, mouth, nose, ears). The same image was used across all
postures for direct comparison.

Writing: Writing “important” on a 24cm baseline. The word
was chosen as common 9-letter word with a good variety of
letters and typographic diversity.

(a) Drawing

(b) Writing

73

important

target

drawing

target

word

Figure 4: Unconstrained Tasks (see text). Colours altered for print.

Postures

We evaluate 35 postures; all 33 candidate postures in Table 1
(10 finger states for each of the 3 palm contact states) plus
3 other specific postures. In addition, we use two postures
as upper and lower baselines to normalize the range of the
subjective ratings across participants. We choose Normal
(however the participant held the pen naturally) as an upper
bound, and Side-Thumb-Index-MiddleIn-PinkyIn as the lower
bound, as it received the lowest rating in the pilot test among
the postures which all participants were able to complete.

Design and Protocol

The primary independent variable is POSTURE with 33 cat-
egorical levels representing each posture to test. To make
the experiment easier for participants, we present all postures
using each palm contact as three GROUPS: 10 heel, 11 side,
and 12 floating. The order of the 3 GROUPS was determined
using a balanced Latin square. Within each GROUP, the order
of POSTURE was randomized. At least a 30 second break was
required between sections, and the participant could stop and
relax or stretch their hand in between any task. The two base-
line postures were performed at the start of the experiment.

For each POSTURE, the participant was first presented with a
training section lasting typically 20 to 140s. This began with
the experimenter describing and demonstrating the posture as
the participant practised on an empty drawing canvas. This
was followed by a subset of the constrained tasks.

The 8 constrained tasks were presented first in random order,
followed by the 2 unconstrained tasks, also in random order.
The directions of the horizontal and vertical lines were also
randomized for each participant (i.e. some drew left-to-right
first, some drew right-to-left first). The same random orders
were used for each participant across all tasks and postures
to make the sequence predictable and to reduce unnecessary
mental effort. Once all the tasks were completed, the partic-
ipant was asked to consider the comfort and control of the
posture for the tasks and provided a single preference score
from 1 to 7 (step 0.5). We considered asking for separate
ratings for metrics like fatigue and complexity, but our pilots
suggested this was too much in an already long study. The
entire experiment took under 2 hours.

Results

Given the large number of posture conditions, we interpret
the results based on visual inspection of the trends evident in
graphs of 6 key metrics (Figure 5).

Preference

For each posture, the participant rated the comfort and control
of the posture as a single subjective preference score from 1 to
7 (most preferred) with step size 0.5. Note this is not a Likert-
type scale, but a continuous interval measure. As explained
above, two postures served as upper and lower baselines to
help normalize this subjective score (N and STIm-p).

Examining the pattern of preference by posture (Figure 5a),
we see a clear preference for the side palm (S-----) and float-
ing palm (F-----) with scores approaching the upper baseline
normal posture. For side palm, postures with the pinky out
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Figure 5: Comparison of postures by main metrics. Some scales inverted to make comparison easier, left-most points in each sub-graph are better

(Error bars are 95% confidence interval). The 10 highlighted postures are those used in the recognizer and final application demonstrations.

(S----P), pinky in (S----p), or both ring and pinky out (S---RP)
had above neutral preference. The same finger combinations
were above neutral for floating palm, but it also added middle,
ring, and pinky out (F--MRP) and middle and ring out (S--MR-).
The simple heel palm only posture (S-----) was above a neu-
tral score of 4, but heel and finger combinations were below
neutral. Postures using grip finger states were less preferred,
but index touching with a floating palm (F-I---) or side palm
(S-I---) were both borderline neutral.

It is important to note that the lower baseline posture (STIm-p)
received a mean preference of 1, but all other gestures received
a mean preference of 3 or more, suggesting that no candidate
postures were strongly disliked.

Error

We calculated two types of error metrics for constrained tasks
similar to Matulic and Norrie’s pen and touch tracing experi-
ment [20]: Start Error applies to tapping and tracing tasks. It
is the distance in pixels from the first contact point of the pen
to the dot or line start. Trace Error applies only to line tracing
tasks. It is the mean of the minimum distance in pixels from
each pen stroke position to the target line.

Examining the pattern of errors (Figure 5b,c), the plain side
palm (S-----) and side palm with non-grip finger combinations
generally have lower error, especially for Start Error. Floating
and heel postures generally have greater error, but of interest

is how dropping a ring or pinky finger (e.g. F----p and F---rp)
provides floating palm stability to reduce error.

Side palm with both grip fingers contacting and non-grip fin-
gers out (STIMRP) had among the highest Start Error, and heel
palm with ring and pinky in (H---rp) has the greatest Trace
Error. These error rates exceed those of the baseline posture.

Duration and Speed

The time and speed to complete tasks indicate overall confi-
dence and articulation ability. We calculated two time duration
metrics: total stroking time for unconstrained drawing and
writing tasks (Duration UC in Figure 5d) and total time to
complete all constrained tapping and tracing tasks (Duration
C in Figure 5e). Plain side, heel and floating palms all exhibit
low durations. The side palm with both grip fingers and all
non-grip fingers out (STIMRP) was notably slow, comparable to
the low baseline posture.

We also examined the average stroke speed during tracing
tasks (Figure 5f). The floating palm posture stands out as a
fast posture which explains the higher error. Other postures
span the speeds of the upper and lower baseline postures,
with a few postures, like side palm and heel palm, slightly
exceeding the upper baseline.

DISCUSSION AND DESIGN IMPLICATIONS

The pattern of preferences and other metrics suggest that most
postures are reasonable to use. There is some divergence in
how higher rated postures perform for error and time metrics.



For example, preferred floating palm postures exhibit higher
error, but lower duration with faster movement. To consider
this more closely, and to summarize our findings as groups of
postures to recommend or avoid, we cluster the experiment
data using combinations of metrics.

Recommendations Based on Clustering

K-means is used to group postures into five clusters to rep-
resent bands from those that are top choices to use to those
that should likely be avoided or used for infrequent actions.
Since there is some divergence when considering error and
time-related measures, we create two sets of cluster postures
based on two feature vectors. The first set focuses on error in
3 dimensions: Preference, Start Error, and Trace Errors. The
second set focuses on time-related measures in 4 dimensions:
Preference, Duration UC, Duration C, and Draw Speed. In
both cases, the preference dimension is included given its im-
portance, and mean cluster preference is used to establish a
relative group ordering.
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(a) Groups considering preference, duration, and speed

(b) Groups considering preference and error

4.46.5 3.7 3.5 2.0

4.76.8 4.1 3.6 1.0

Figure 6: Posture groups: (a) group clusters focused on time; (b) group

clusters focused on error. Mean preference shown for each group.

The clustering results are shown in Figure 6. As expected,
upper and lower baseline postures appear in the highest and
lowest groups. Plain side, heel and floating palms appear in
the top two groups. For time-related metrics, there is some
cluster separation between pen-finger postures and heel non-
pen postures, suggesting the former are used more confidently.
The side palm with ring and pinky in shows the largest shift
between ordered groups, but all other postures shift no more
than one adjacent group.

Left-Handed Participant Pilot

We also conducted the complete protocol with three left-
handed participants finding similar results in terms of scale
and pattern to those above. Notable exceptions include greater
preference for the plain heel posture, less preference for plain
floating posture, and a strong dislike for heel with ring and
pinky in. Regarding errors, heel postures with any grip-fingers
touching show a more pronounced increase in error, and there
was an even clearer separation in high drawing speed for float-
ing palm. In spite of some differences, the general pattern is
similar, and we believe the interaction technique and posture
recommendations hold for left-handed users as well.

Design Implications

Overall, our results show designers should favour side and
floating palm postures over those using the heel, with excep-
tion of plain heel (H-----) and heel with pinky out (H----P)
postures. Postures with non-grip fingers should be preferred,
and within this group, postures using only the pinky (*----P or
*----p) or a matching ring and pinky combination (*---RP or
*---rp) are good choices. Placing all non-grip fingers out with
a floating palm (F--MRP) is also a reasonable option. Although
postures with touching grip fingers are not ranked as high, the
clustering exercise suggests they may be good candidates for
less precise fast actions.

These results do not consider how reliably different postures
can be recognized, an aspect that will have implications on
practical implementation and real-world usability. We investi-
gate this in the following section.

RECOGNITION

Our hand posture detection exploits the touch contact pattern
of the full hand on the screen surface instead of just the finger-
tips. Prior work has also looked at that extended touch input
space with recognizers either using the hand contour when raw
touch data is available [29, 22], contact ellipses [38, 40], or
simply the touch points [12]. In most cases, these techniques
use classifiers based on simple features and heuristics that may
only work well for a small number of very distinct contact
patterns. Recent deep learning methods applied on the grey
touch image itself have the potential to yield higher recogni-
tion performance [23]. Therefore, to recognize the different
postures we use a classifier based on a deep neural network
that is trained on the pen and touch data recorded in the ex-
periment above. This recognizer is trained for a 10-posture
set (see Table 2) selected for the application demonstrations
described later. In practice the same methodology can be used
to train any set of postures.

Training Data and Recognition Context

The recognizer can be triggered upon or around pen down to
determine the mode of the whole pen action, change mode
continuously during input [20], or invoke in-place widgets like
menus. Many devices, like the Wacom tablet, support hover
detection, which provides pen coordinates when the pen is
near the surface. The number of hovering input frames just
before the pen contacts the surface depends on the sensing
hardware and the speed of the hand motion. With our system
and data, an average of 5.7 initial pen hovering frames (sd=2.0)
are available to be used in the classifier.

Classification

Raw capacitive touch images lend themselves well to neural
networks used for natural image classification such as CNNs
[23], so we adopt a similar approach. Since we have pen data
in addition to the raw touch input, we augment the single-
channel image of each touch frame with two additional chan-
nels capturing pen position and contact state. Specifically, we
draw round blobs centred at the pen coordinates in the second
channel if hovering and third channel if touching. Figure 7
shows examples of three-channel images resulting from that
data-combining operation.



Figure 7: Pen and touch data combined in separate image channels. Rep-

resented postures from left to right: H---rp, STIMRP, and F--Mr-
.

Postures are classified using a deep neural network based on
the VGG16 model [32] with convolutional layers pre-trained
on ImageNet [5]. This pre-training on natural images allows
the network to converge after only a few epochs when fed with
other images to classify. Furthermore, VGG is well known
and thus reproducible and may be compared with other work.

The features of the network are extracted after the max-pooling
operation following the final convolution, which are then fed
through a fully connected layer with 1024 units, and finally
through another fully connected layer which has output size
equal to the number of classes. The first linear layer uses
the ReLU [24] activation and dropout [34] with a ratio of
0.4. The network is trained using the Adam [16] optimizer
with a learning rate of 0.001, a batch size of 128 and with
weight decay set to 0.001. Our neural network architecture
was implemented in Python using the Chainer framework [1].

Training and Validation

To train our VGG network, we used the three-channel images
of the combined pen and touch data contained within a 200ms
window centred on pen down since that is when most of the
posture-classification decisions will be made. Only images
with actual pen data were used, meaning the pen was either
in detectable range for hovering or touching the surface. We
split our participant data into 15 training and 3 validations sets
(12 experiment participants, 3 left-handed pilot participants, 3
other pilot participants). The data of left-handed participants
was mirrored. We did not include the plain floating palm pos-
ture for classification, since it has no touch data and therefore
is easy to distinguish. The number of frames per posture were
approximately 9,000 to 12,000 for the training sets and 1,300
to 2,500 for the test sets. We artificially doubled those samples
through data augmentation by applying random translations
and light scaling and rotation transforms. Those operations
add diversity to the data and fill in screen areas not sufficiently
covered by the experiment tasks.

We performed 30 runs of repeated random sub-sampling vali-
dation with our leave-3-out scheme for our two posture sets.
For each run, we recorded the maximum overall accuracy
and lowest loss (softmax cross-entropy) within 5 epochs and
computed the average and maximum accuracies and losses
obtained over the 30 runs. We also saved the neural network
model associated with the max accuracy and minimum loss of
each run for detailed analysis.

Results

For the 34-postures set, we obtained an average overall ac-
curacy of 62.2% with associated loss of 1.82, with the best

performing model registering a 70% accuracy and a 1.63 loss.
The confusion matrix of mean accuracy of the best models in
each run is shown in Figure 8.

Figure 8: Confusion matrix for all postures except Floating using the

best neural network model

The matrix shows that normal and side palm postures are
often confused, which is to be expected as people rest on
their hand edge when writing normally. Side palm postures
with index or thumb touches around the nib also show poor
recognition accuracy, perhaps because they are too close and
their touch print is not distinct enough. Generally, there seems
to be ambiguity between side and heel-based postures, which
is also not surprising as the palm base inevitably rolls when
positioning the fingers and dragging the hand on the surface.
Floating palm-based postures do not suffer from that confusion
and hence generally score higher.

For the 10-posture set, the overall average accuracy was 91.4%
with a loss of 0.50 and the best performing model had an
accuracy of 96% with a loss of 0.20. Those results show that
our chosen postures can—in theory—be reliably detected in a
real application context. We use the best model as the basis
for the recognizer of the applications used in the second study.

APPLICATION DEMONSTRATIONS

To illustrate how unimanual pen+touch input can be applied in
a real application context, we created a posture-based interface
for two representative types of tasks: document annotation
(using Foxit Reader) and vector drawing (using Inkscape). The
former is a simpler and more intuitive application because of
its real-world parallel. The latter is more complex and requires
a dense toolset to use effectively. We use desktop applications
for rapid prototyping, but the general concept generalizes to
purpose-built tablet applications.

We created three widgets designed specifically for general pen
input: radial menus, gesture input, and handwriting recogni-
tion for text input (Figure 9). We use radial menus for selecting
colours and changing drawing attributes. Gesture input uses
six standard Microsoft Application gestures: left and right



(a) (b)

(e)
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Figure 9: Application highlights: (a) switching from pencil to highlighter with Side and Heel postures (document annotation); (b) choosing pen colour

from radial menu with Side-RingOut-PinkyOut (document annotation); (c) object creation menu with Side-PinkyOut (vector drawing); (d) using Side-
PinkyIn to use handwriting recognition for creating a text object (vector drawing); (e) gesture command mode using Float-Index (vector drawing).

semi-circles for undo and redo; up and down flicks for copy
and paste; and a “scratch out” zig-zag for delete.

Posture Mapping and Interfaces

Using a set of 10 postures, we designed the mappings and
interfaces to optimize semantic proximity and posture-action
suitability (Table 2). The results of the suitability experiment
were taken into account when choosing the posture set and
mapping postures to application commands. The video pro-
vides full application demonstrations.

Semantic proximity: This was achieved by mapping similar
actions to related postures. In both applications, side palm
based postures were associated with creation: drawing, eras-
ing, creating shapes etc., whereas floating palm based postures
were associated with more "macro" interactions: selecting,
transforming, and styling in the vector editor; navigation and
search in the document annotator.

Posture-action suitability: This was achieved by mapping
common actions to more preferred and less restrictive pos-
tures. In both applications, the most common, most precision-
demanding tool is mapped to Side while the next most common
is mapped to Side-PinkyOut. Both of these postures had high
preference scores and accuracy results. Menus are triggered
by postures which allow for pen tip motion but restrict hand
motion, i.e. those using RingOut-PinkyOut. In document an-
notation, another equally simple posture, Heel, is used for
the common action of highlighting. Actions requiring less
precision, like gesturing, were assigned to postures with lower
accuracy results, Float-Index.

Technical Implementation

Our implementation works as a global service that runs the
recognizer in the background and injects commands into the
current application. Any application can be given a uniman-
ual pen+touch interface by defining a YAML configuration
file which is automatically activated based on the foreground
window’s title. The global service (C#, .NET, WPF) forwards
raw touch and pen input data to the recognizer (Python) using
sockets. To improve performance, the service triggers only
one recognition request, consisting of the latest 8 frames of

Posture Annotation Drawing

S----- Pencil Polygon Tool
S----p – Text Tool
S----P Eraser Creation Menu
S---RP Colour Menu Style Menu
H----- Highlighter Node Editor
F----- Hand Select Tool
F-I--- Gestures Gestures
F----p Search –
F----P – –
F---RP – Style Menu

Table 2: Posture mapping for application demonstrations

input, every 150ms. Everything is done asynchronously, so
no software lag is introduced and there is no increased de-
lay for pen or touch events. The maximum possible delay
from when a posture change occurs to when the system recog-
nizes it is 200ms. However, since the postures require some
time to form, this delay is not noticeable in practice. Based
on the recognized posture, the service then triggers actions
to the foreground application by sending keyboard shortcuts,
key strokes, or mouse events (using Window’s SendKeys and
inputsimulator), displaying pen-localized radial menus (us-
ing custom WPF windows), or by collecting strokes for gesture
or text recognition (using Microsoft’s InkCanvas APIs).

STUDY: USABILITY IN PRACTICE

The goal of this study is to test general usability of unimanual
pen+touch input in a more realistic setting. Using the demon-
stration applications, we examine if people can accomplish
realistic tasks using the techniques, whether they can remem-
ber posture-to-command mappings, and also get a sense for in
situ recognizer accuracy.

Participants and Apparatus

We recruited 5 right-handed participants, ages 22 to 30, of
which 2 were female. Recruiting was done by word-of-mouth
and each participant received $10 for successful completion
of the 90-minute study. Previous pen-tablet experience was
preferred, since the problem of pen mode-switching would be
better understood: 4 of the participants had such experience.



The same Wacom tablet was used, but with an HP Envy (Win-
dows 10, Core i5 2.60 GHz, 8GB RAM) because of its GPU
(GeForce GT 740M) to improve recognition speed.

Design and Protocol

The session began with approximately 10 minutes of posture
training. This required the participant to complete a reduced
task set from Study 1 with all 10 postures used by the demo
applications. Unlike Study 1, the recognized posture was dis-
played so the participant knew if the recognizer successfully
identified the performed posture. After posture training, the
participant completed a set of training and test tasks for docu-
ment annotation, followed by a set of training and test tasks
for vector drawing. During this training session, a document
was loaded into an application that included instructions to
perform certain tasks along with the postures to use. During
the trials, they were only given written instructions, although
they were allowed to ask the experimenter if they forgot the
corresponding posture. The tasks for each application were
chosen to be non-expert, relatively common, and represen-
tative of the possible postures. A post-study interview was
conducted after all application tasks were completed.

Document annotation tasks were provided as a list of opera-
tions to perform on a PDF document, such as“highlight the
word ‘Alice’ in yellow” and “search for the word ‘Party”’.
The complete set of document annotation tasks were: circling
words or writing text with the pencil tool; erasing with the
eraser tool; highlighting text; changing pencil or highlighter
colour; performing gestures; searching the document.

Vector drawing tasks required the participant to draw a set of
shapes to match a given drawing. These shapes were chosen
to require multiple tool mode-switches. The complete set
of vector drawing tasks were: drawing polygons with the
polygon tool; using other creation tools (pencil, rectangle,
ellipse); node editing; transforming objects; styling objects;
performing gestures; entering text.

Results

All participants successfully completed the experiment in un-
der 90 minutes. Due to scheduling issues, one participant (P1)
did the study in 2 parts over 2 days. Four participants said
they would use at least some postures in their personal work
if the recognizer was more accurate. The fifth participant had
experience with indirect pen tablets and preferred keyboard
shortcuts for mode-switching.

While trying to recall corresponding posture actions during the
“test” section, participants often tried to perform the posture,
and watch the cursor icon to determine if they were in the cor-
rect mode. Participants had the most trouble with the colour
menu of the document annotator. Side-RingOut-PinkyOut
would bring up the colour menu for the pencil tool or the high-
lighter tool, depending on which tool was previously active.
Although participants found the semantics of this useful: “I’d
just drop the 2 fingers regardless of palm” (P3), they found it
difficult to transition to it from Side without another posture
being recognized during the transition. Three participants said
there were too many postures: “I would rather maybe only

have a core posture and one that lets me change its tool” (P4).
This could be due to the novelty of the technique.

Three participants commented on discomfort with RingOut-
PinkyOut, but some commented that slight adjustment ad-
dressed this “It was initially difficult, but some slight modifica-
tions had a positive impact” (P1). The short time of the study
prevented all participants from finding comfortable posture
variants which worked best for their hand. Two participants
did comment positively on Float-Index. Participants were en-
couraged to and experimented with using different fingers for
particular postures, such as the middle or ring fingers near the
pen nib instead of the index finger.

The recognizer worked well with some misclassification more
apparent for certain participants. For some participants, Side
would be frequently misclassified as Heel or Side-PinkyIn. De-
spite data augmentation, the recognizer also exhibited poorer
performance in regions not covered by the first experiment,
causing us to verbally prompt the user to perform the postures
closer to the centre of the screen.

DISCUSSION

The results of the first study suggest that a number of uniman-
ual pen+touch postures may be performed relatively comfort-
ably while maintaining pen control. This was further supported
by all 5 participants completing the tasks in the second study.

Although the deep learning recognizer exhibited high accuracy
with the controlled experiment data, the more nuanced results
of the second study suggest improvements are needed for real
application contexts. More data is necessary to determine if
recognition errors are due to inherent posture similarity or to
insufficient training data. Accuracy would likely increase by
at least partially training the network on each target user, or
by using a reduced set of say 4 to 5 robust postures.

The demonstrations show pre-existing applications can be
augmented to create simple or complex unimanual pen+touch
experiences. The core pen, highlighter, and eraser switching
was positively received, as were the gesture and text input
widgets. Posture-based menu interactions were less positively
received, possibly because the colour menu could be difficult
to trigger and proved a little unstable due to software issues.

Other applications that could make use of unimanual
pen+touch postures are painting applications, with mappings
to different brushes and colours, and spreadsheet editors,
with posture-based switching between data entry (using
handwriting recognition) and selection or data manipulation.
Furthermore, our text input widget hints at general keyboard
input, and even triggering keyboard shortcuts using postures.
For example, writing the letter C using Float-PinkyOut could
trigger CTRL-C. Scaling this to shortcuts with multiple
modifiers would be a challenge, but could bring desktop
shortcut methods to a pen-only environment.

Limitations and Opportunities

Applicability for users with reduced hand control — Older peo-
ple, children, people with motor impairments, and people with
hand injuries such as missing digits might not be able to fully
utilize our technique. We are proposing a way to accelerate



existing GUI operations, so redundant input methods may ex-
ist. Individual differences in hand control could be leveraged
to create user-specific postures, especially when non-precision
grips or irregular hand physiology is present.

Compatibility with other pen input methods — Some input
methods, like pushing barrel buttons or simultaneous fine
control of pen pressure, are likely harder to execute while
maintaining some unimanual postures. But we believe many
techniques, like using the eraser end of the pen, tilting, and
rotating could be compatible. Since our input space includes
the normal posture, all pen input techniques remain compatible
with that grip, but perhaps not the diverse postures we propose.
Unimanual postures are also compatible with marking menus
and related command gestures, and our postures provide a
solution to the “inking versus command” problem.

Discoverability — Admittedly these postures are not intuitive
to users and must be taught, but a participant who did the
second study over two days commented on improvement on
the second day, suggesting that the learning curve is not steep.
The second study further also suggests that cursor feedback is
essential for users to discover posture actions once they know
what postures are possible. Our succinct posture naming for-
mats (F---RP or Float-RingOut-PinkyOut) could be displayed
alongside menu items and tooltips, similar to how keyboard
shortcuts are displayed in some applications. Using onscreen
gesture guides for training [10] is another approach.

Cognitive Learning — Like any large input space, memorizing
mappings between posture and action requires some effort.
Future work can examine learning directly and investigate
how a rehearsal-based interface or feed-forward technique
could help transition from novice to expert performance.

Physical Learning — In addition, since pen grip is a fine motor
skill, more time, or a night’s sleep after exposure might have
an impact on comfort and control, as suggested again by our
two-day study participant, who also admitted to experiencing
less discomfort on the second day.

Recognition Issues — Some systematic recognition issues were
observed. Participants mentioned difficulty when transitioning
between Side to Side-RingOut-PinkyOut or Side-PinkyOut.
During the transition, the hand contact can erroneously trigger
any of those three postures. Although not a problem if posture
actions are non-destructive, those postures triggered menus,
which proved jarring when not expected. One possible solution
is to have a mandatory hold period when transitioning between
similar postures. In general, false positives were minimal,
though we noticed Heel was often misclassified as Side. We
did observe a larger variety of Heel postures in the first study,
which might have affected the recognizer. A stricter definition
of that posture might reduce misclassifications.

Hardware — Our recognizer requires raw capacitive input,
something all touch devices support, but vendors often do not
expose it without some low level system work [42, 23]. Other
simpler, more synthetic touch data (such as contact ellipses or
even touch points) could possibly be sufficient to recognize a
few very distinctive postures.

CONCLUSION

We introduced a novel unimanual pen+touch input space. The
results of our first evaluation with 33 postures indicated many
are reasonable in terms of subjective comfort and objective
degree of control. Using data from the study, we trained a
convolutional neural network using a pre-trained VGG archi-
tecture to recognize the postures with high accuracy. Two
application demonstrations using a 10-posture interface show
how the techniques work in practice, and a small usability
study found positive feedback. We were surprised to find so
many viable postures, with our demonstration applications
showing that 10 postures are feasible. However, even a more
limited system with 2 or 3 postures would be valuable for
fast switching between frequent modes, for instance ink, high-
lighter, and eraser in a simple note-taking application.

A logical next step is to formally test the performance of
switching between different postures using a standard mode-
switching experiment protocol [18, 35]. Also, a direct compar-
ison with techniques such as marking menus would establish
performance benchmarks relative to popular baselines. We
hypothesize that unimanual pen+touch postures more closely
associate command activation with direct manipulation, but
unlike marking menus, there is no obvious method to support
novice-to-expert learning for our postures.

Other future directions include exploring a smaller set of pos-
tures for mobile tablets or other non-tripod grip postures (like
a power grip) that can be sensed using only the capacitive
pattern on the touch surface. Our hope is that our work con-
tributes to making pen input more expressive, meaning the
input space is increased and more nuanced. We remain in awe
of how remarkable the human hand is, and what it is capable
of when given the right digital support.
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